Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 30))

  • 71 Accesses

Abstract

With the immune surveillance hypothesis, Macfarlane Burnet summed up about one hundred years of development in tumor immunology. He collated evidence from numerous published reports and personal observations that document the crucial role of the immune system in the defense against cancer. This evidence has been complemented by new investigations and includes postmortem examinations that reveal a high incidence of malignancies that did not become clinically manifest, the demonstration of tumor infiltrating T lymphocytes in many malignancies which often are correlated with a favorable prognosis, spontaneous regression of tumors or tumor regression correlated with the induction of inflammation in the tumors, an increase of the incidence of cancer in patients who suffer from immune deficiency diseases, and, in experimental models, the increased frequency of cancer in thymectomized mice.

“In large long-lived animals, like most of the warm-blooded vertebrates, inheritable genetic changes must be common in somatic cells and a proportion of these changes will represent a step towards malignancy. It is an evolutionary necessity that there should be some mechanisms for eliminating or inactivating such potentially dangerous mutant cells ... The thymus-dependent system of immunocytes will be almost solely responsible for surveillance ...” (Burnet 1970)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Berger CL, Longley BJ, Imaeda S, Christensen I, Heald P, Edelson RL (1998) Tumor-specific peptides in cutaneous T-cell lymphoma: association with class I major histocompatibility complex and possible derivation from the clonotypic T-cell receptor. Int J Cancer 76: 304–311

    Article  PubMed  CAS  Google Scholar 

  • Boon T, Cerottini JC, Eynde B van den, Van Der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12: 337–365

    Article  PubMed  CAS  Google Scholar 

  • Borges E, Wiesmuller KH, Jung G, Walden P (1994) Efficacy of synthetic vaccines in the induction of cytotoxic T lymphocytes. Comparison of the costimulating support provided by helper T cells and lipoamino acid. J Immunol Methods 173: 253–263

    Google Scholar 

  • Brunner MC, Mitchison NA, Schneider SC (1994) Immunoregulation mediated by T-cell clusters. Folia Biol (Praha) 40: 359–369

    CAS  Google Scholar 

  • Burnet M (1970) The concept of immune surveillance Prog Exp Tumor Res 13: 1–27

    CAS  Google Scholar 

  • Chaux P, Vantomme V, Coulie P, Boon T, Van Der Bruggen P (1998) Estimation of the frequencies of anti, MAGE, 3 cytolytic T-lymphocyte precursors in blood from individuals without cancer. Int J Cancer 77: 538–542

    Article  PubMed  CAS  Google Scholar 

  • De Plaen E, Lurquin C, Lethe B, Bruggen P van der, Brichard V, Renauld JC, Coulie P, Van Pel A, Boon T (1997) Identification of genes coding for tumor antigens recognized by cytolytic T lymphocytes. Methods Enzymol 12: 125–142

    Article  Google Scholar 

  • De Smet C, Martelange V, Lucas S, Brasseur F, Lurquin C, Boon T (1997) Identification of human testis, specific transcripts and analysis of their expression in tumor cells. Biochem Biophys Res Commun 241: 653–657

    Article  PubMed  Google Scholar 

  • Eynde BJ van den, Boon T (1997) Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res 27: 81–86

    Article  PubMed  Google Scholar 

  • Forste N, Gellrich S, Golembowski S, Rutz S, Audring H, Sterry W, Jahn S (1997) Analysis of V(H) genes rearranged by individual B cells in dermal infiltrates of patients with mycosis fungoides. Clin Exp Immunol 110: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Gellrich S, Golembowski S, Audring H, Jahn S, Sterry W (1997) Molecular analysis of the immunoglobulin VH gene rearrangement in a primary cutaneous immunoblastic B-cell lymphoma by micromanipulation and single, cell PCR. J Invest Dermatol 109: 541–545

    Article  PubMed  CAS  Google Scholar 

  • Gundlach BR, Wiesmuller KH, Junt T, Kienle S, Jung G, Walden P (1996) Determination of T cell epitopes with random peptide libraries. J Immunol Methods 192: 149–155

    Article  PubMed  CAS  Google Scholar 

  • Heeney JL, Beverley P, McMichael A, Shearer G, Strominger J, Wahren B, Weber J, Gotch F (1999) Immune correlates of protection from HIV and AIDS: more answers but yet more questions. Immunol Today 20: 247–251

    Article  PubMed  CAS  Google Scholar 

  • Herlyn D, Birebent B (1999) Advances in cancer vaccine development. Ann Med 31: 66–78

    Article  PubMed  CAS  Google Scholar 

  • Hiltbold EM, Ciborowski P, Finn OJ (1998) Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4+ T cells. Cancer Res 58: 5066–5070

    PubMed  CAS  Google Scholar 

  • Juretic A, Malenica B, Juretic E, Klein J, Nagy ZA (1985) Helper effects required during in vivo priming for a cytolytic response to the H-Y antigen in nonresponder mice. J Immunol 134: 1408–1414

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Robbins PF, Wang RF, Parkhurst M, Kang X, Rosenberg SA (1998) The use of melanosomal proteins in the immunotherapy of melanoma. J Immunother 21: 237–246

    Article  PubMed  CAS  Google Scholar 

  • Kern F, Surel IP, Brock C, Freistedt B, Radtke H, Scheffold A, Blasczyk R, Reinke P, Schneider-Mergener J, Radbruch A, Walden P, Volk HD (1998) T cell epitope mapping by flow cytometry. Nat Med 4: 975–978

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Kokubo T, Sato K, Kimura S, Asano K, Takahashi H, Iizuka H, Miyokawa N, Katagiri M (1998) CD4+ T cells from peripheral blood of a melanoma patient recognize peptides derived from nonmutated tyrosinase. Cancer Res 58: 296–301

    PubMed  CAS  Google Scholar 

  • Linnemann T, Brock C, Sparbier K, Muche M, Mielke A, Lukowsky A, Steffy W, Kaltoft K, Wiesmuller KH, Walden P (1998) Identification of epitopes for CTCL, specific cytotoxic T lymphocytes. Adv Exp Med Biol 451: 231–235

    Article  PubMed  CAS  Google Scholar 

  • London NJ, Farmery SM, Will EJ, Davison AM, Lodge JP (1995) Risk of neoplasia in renal transplant patients. Lancet 346: 403–406

    Article  PubMed  CAS  Google Scholar 

  • Manici S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP (1999) Melanoma cells present a MAGE-3 epitope to CD4+ cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J Exp Med 189: 871–876

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, White DE (1996) Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol 19: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Tureci O, Pfreundschuh M (1997) Serological identification of human tumor antigens. Curr Opin Immunol 9: 709–716

    Article  PubMed  CAS  Google Scholar 

  • Schoenberger SP, Toes RE, Van Der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393: 480–483

    Article  PubMed  CAS  Google Scholar 

  • Schuler G, Thurner B, Romani N (1997) Dendritic cells: from ignored cells to major players in T-cell, mediated immunity. Int Arch Allergy Immunol 112: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Sparbier K, Walden P (1999) T cell receptor specificity and mimotopes. Curr Opin Immunol 11: 214–218

    Article  PubMed  CAS  Google Scholar 

  • Stuhler G, Walden P (1993) Collaboration of helper and cytotoxic T lymphocytes. Eur J Immunol 23: 2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Stuhler G, Zobywalski A, Grunebach F, Brossart P, Reichardt VL, Barth H, Stevanovic S, Brugger W, Kanz L, Schlossman SF (1999) Immune regulatory loops determine productive interactions within human T lymphocyte, dendritic cell clusters. Proc Natl Acad Sci USA 96: 1532–1535

    Article  PubMed  CAS  Google Scholar 

  • Szikora JP, Van Pel A, Boon T (1993) Turn mutation P35B generates the MHC-binding site of a new antigenic peptide. Immunogenetics 37: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Tureci O, Sahin U, Schobert I, Koslowski M, Scmitt H, Schild HT, Stenner F, Seitz G, Rammensee HG, Pfreundschuh M (1996) The SSX-2 gene, which is involved in the t(X,18) translocation of synovial sarcomas codes for the human tumor antigen HOM-MEL-40. Cancer Res 56: 4766–4772

    PubMed  CAS  Google Scholar 

  • Weynants P, Lethe B, Brasseur F, Marchand M, Boon T (1994) Expression of MAGE genes by non-small-cell lung carcinomas. Int J Cancer 56: 826–829

    Article  PubMed  CAS  Google Scholar 

  • Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer-zum-Buschenfelde KH, Beach D (1995) A pl6INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269: 1281–1284

    Article  PubMed  Google Scholar 

  • Yasukawa M, Ohminami H, Kaneko S, Yakushijin Y, Nishimura Y, Inokuchi K, Miyakuni T, Nakao S, Kishi K, Kubonishi I, Dan K, Fujita S (1998) CD4+ cytotoxic T-cell clones specific for bcr-abl b3a2 fusion peptide augment colony formation by chronic myelogenous leukemia cells in a b3a2-specific and HLA-DR-restricted manner. Blood 92: 3355–3361

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walden, P. (2000). Tumor Antigens. In: Walden, P., Sterry, W., Hennekes, H. (eds) Therapeutic Vaccination Strategies. Ernst Schering Research Foundation Workshop, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04183-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04183-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04185-7

  • Online ISBN: 978-3-662-04183-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics