Skip to main content

Abstract

The first problem for a control or systems engineer in front of a process to control is to obtain a precise and easily manipulated model with predictions corresponding to the real observation. The different mathematical equations describing a system and to predict its behaviour is called a mathematical model. The mathematical model can also be defined as an operator giving the relation between input and output signals. It is important to note that input and output variables refer to the model and not to the physical system: for instance the steam flow out of a boiler can well represent the input of a model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borne P. et al. “Modélisation et identification des processus”, Tome 2. Edition Technip, Paris, 1992.

    MATH  Google Scholar 

  2. Callendar, H. L., “Presidential Adress”, Proc. Phys. Soc, pp. 153–189, London 1911.

    Google Scholar 

  3. Carnot, S. 1824, “La puissance motrice du feu”. Original in french, english edition by E. Mendoza, Dover Publications 1960.

    Google Scholar 

  4. Falk, G, “Energie und Entropie”, Springer Verlag

    Google Scholar 

  5. Fuchs, H. U., 1996, “The Dynamics of Heat”, Springer Verlag, 1996.

    Google Scholar 

  6. Karnopp D. C. and R.C. Rosenberg “Systems dynamics. A unified Approach”, Wileey Intersciences; New York, 1975.

    Google Scholar 

  7. Karnopp, D. C., “State Variables and Pseudo-Bond graphs for Compressible Thermofluid Systems”, Trans. ASME J. DSMC, Vol. 101, p. 201–204, 1979.

    Google Scholar 

  8. Karnopp D. C. and R.C. Rosenberg “Systems dynamics. A unified Approach”, Second edition Wileey Inter-sciences; New York, 1990.

    Google Scholar 

  9. Lorenz, F. “Modelling level, a question of semantics”, IMACS ESIEE CESA’96 Multiconference, Lille, France, 1996.

    Google Scholar 

  10. Sueur, C., Dauphin-Tanguy “Bond-graph approch for structural analysis of MIMO linear system”, J. of the Franklin Institute, 328, N°. 1, pp. 555–70, 1991.

    Google Scholar 

  11. Tagina, M., “Application de la modélisation bond graph à la surveillance des systèmes complexes”, Ph.D Thesis, University of Lille, octobre 1995.

    Google Scholar 

  12. Thoma, J. U., “Modern Oilhydraulic Enginnering”, Trade and Technical Press Ldt, Morden, Surrey, England, 1971.

    Google Scholar 

  13. Thoma, J. U, “Simulation by Bond graphs”, Springer Verlag 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thoma, J., Bouamama, B.O. (2000). Introduction to Thermodynamic Systems Modelling. In: Modelling and Simulation in Thermal and Chemical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04181-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04181-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08566-6

  • Online ISBN: 978-3-662-04181-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics