Reaction-Diffusion Equations on a Square

  • Zhen Mei
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 28)

Abstract

We study in this chapter bifurcations of the reaction-diffusion equation
$$ \frac{{\partial u}}{{\partial t}} = G\left( {u,\lambda ,d} \right) $$
(10.1a)
with
$$ G\left( {u,\lambda ,d} \right): = \left( \begin{array}{l}\Delta {u_1} + {f_1}\left( {{u_1},{u_2},\lambda } \right) \\d\Delta {u_2} + {f_2}\left( {{u_1},{u_2},\lambda } \right) \\\end{array} \right) $$
on the unit square Ω:— [0,1] x [0,1] with the homogeneous Dirichlet boundary conditions
$$ {u_1} = 0,\quad {u_2} = 0\;on\;\partial \Omega $$
(10.1b)
Here u :— (u 1 , u 2 ) T are state variables representing concentrations of immediate products; λ ∈ R p is a vector of control parameters and d ∈ R is the diffusion rate of the second substance. The functions f i : R 2+p R, i = 1,2, describe reactions among the substances. They are supposed to be sufficiently smooth and have a polynomial growth
$$ \left| {\partial _x^i{f_j}\left( {x,\lambda } \right)} \right| \le {c_1} + {c_2}{\left\| x \right\|^r}\quad for\;\left\| x \right\| \to \infty ,\quad i = 1,2,3,\;j = 1,2 $$
for some constants c 1, c 2, r ≥ 0. Furthermore, we assume
$$ {f_i}\left( {0,0,\lambda } \right) = 0\quad for\;all\;\lambda \in R,\;i = 1,2 $$
(10.2)

Keywords

Manifold Eter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Zhen Mei
    • 1
  1. 1.Department of MathematicsUniversity of MarburgMarburgGermany

Personalised recommendations