Skip to main content

Classical-Type Limit Theorems for Sums of Independent Random Variables

  • Chapter

Abstract

This article presents a number of classical limit theorems for sums of independent random variables and more recent results which are closely related to the classical theorems. It concentrates on three basic subjects: the central limit theorem, the laws of large numbers and the law of the iterated logarithm for sequences of independent real-valued random variables. The author was restricted to an article of small size. Therefore many chapters of the classical theory of summation of independent random variables were omitted, particularly limit theorems with non-normal limit distributions, multidimensional limit theorems and local limit theorems. This article may be regarded as an introduction for the reader who wishes to become acquainted with the classical limit theorems for sums of independent random variables without spending much time. More detailed presentations may be found, for example, in the author’s book (1987) and in its predecessors Csörgö and Révész (1981), Gnedenko and Kolmogorov (1949), Hall (1982), Ibragimov and Linnik (1965), Loève (1960), Petrov (1972, 1995), Révész (1967) and Stout (1974).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, L.E., and Katz. M. (1965): Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, No. 1, 108–123. Zbl. 142. 14802

    Google Scholar 

  • Berkes, I. (1972): A remark to the law of the iterated logarithm. Studia Sci. Math. Hungar. 7, No. 1–2, 189–197. Zbl. 265. 60025

    Google Scholar 

  • Berry, A.C. (1941): The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc. 49, No. 1, 122–136. Zbl. 025. 34603

    Google Scholar 

  • Bikelis, A. (1966): Estimates of the remainder term in the central limit theorem. Lit. Mat. Sb. 6, No. 3 (in Russian), 323–346. Zbl. 149. 14002

    Google Scholar 

  • Buldygin, V.V. (1978): The strong law of large numbers and convergence of Gaussian sequences to zero. Teor. Veroyatn. Mat. Stat., Kiev, No. 19, 33–41. Engl. transl.: Theory Probab. Math. Stat. 19, 35–43 (1980; Zbl. 485.60029). Zbl 407. 60021

    Google Scholar 

  • Csörgö, M., and Révész, P. (1981): Strong Approximations in Probability and Statistics. Akadémiai Kiadd, Budapest. Zbl. 539. 60029

    Google Scholar 

  • Egorov, V.A. (1969): On the law of the iterated logarithm. Teor. Veroyatn. Primen. 14, No. 4. 722–729. Engl. transi.: Theor. Probab. Appl. 14, No. 4, 693–699. Zbl. 211. 48903

    Google Scholar 

  • Egorov, V.A. (1972): On Kolmogorov’s theorem on the law of the iterated logarithm. Vestn. Leningr. Univ. Ser I 13, 140–142 ( Russian ). Zbl. 244. 6022

    Google Scholar 

  • Egorov, V.A. (1973): On the rate of convergence to normal law which is equivalent to the existence of a second moment. Teor. Veroyatn. Primen. 18, No. 1, 180–185. Engl. transi.: Theory Probab. Appl. 18, No. 1, 175–180. Zbl. 307. 60025

    Google Scholar 

  • Esseen, C.G. (1942): On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. A28, No. 2, 1–19. Zbl. 027. 33902

    Google Scholar 

  • Esseen, C.G. (1945): Fourier analysis of distribution functions. Acta Math. 77, 1–125. Zbl. 060. 28705

    Google Scholar 

  • Etemadi, N. (1981): An elementary proof of the strong law of large numbers. Z. Wahrschlichkeitstheorie Verw. Geb. 55, No. 1, 119–122. Zbl. 448. 60024

    Google Scholar 

  • Feller, W. (1968): On the Berry—Esseen theorem. Z. Wahrscheinlichkeitstheorie Verw. Geb. 10, No. 3, 261–268. Zbl. 167. 17304

    Google Scholar 

  • Gnedenko, B.V., and Kolmogorov, A.N. (1949): Limit Distributions for Sums of Independent Random Variables. Gostekhizdat, Moscow-Leningrad. Engl. transl.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, Mass. (1954). Zbl. 056. 36001

    Google Scholar 

  • Hall, P. (1980): Characterizing the rate of convergence in the central limit theorem. Ann. Probab. 8, No. 6, 1037–1048. Zbl. 456. 60018

    Google Scholar 

  • Hall, P. (1982): Rates of Convergence in the Central Limit Theorem. Pitman, Boston, London and Melbourne. Zbl. 497. 60001

    Google Scholar 

  • Heyde, C.C. (1967): On the influence of moments on the rate of convergence to the normal distribution. Z. Wahrscheinlichkeitstheorie Verw. Geb. 8, No. 1, 12–18. Zb. 149. 14001

    Google Scholar 

  • Heyde, C.C. (1969): Some properties of metrics in a study of convergence to normality. Z. Wahrscheinlichkeitstheorie Verw. Geb. 11, No. 3, 181–192. Zbl. 169. 20902

    Google Scholar 

  • Heyde, C.C. (1973): On the uniform metric in the context of convergence to normal- ity. Z. Wahrscheinlichkeitstheorie Verw. Geb. 25, No. 2, 83–95. Zbl. 699. 62095

    Google Scholar 

  • Heyde, C.C., and Nakata, T. (1984): On the asymptotic equivalence of L 7, metrics for the convergence to normality. Z. Wahrscheinlichkeitstheorie Verw. Geb. 68, No. 1, 97–106. Zbl. 546. 60035

    Google Scholar 

  • Ibragimov, I.A. (1966): On the approximation of distribution functions of sums of independent variables. Teor. Veroyatn. Primen. 11, No. 4, 632–655. Engl. transl.: Theor. Probab. Appl. 11, No. 4, 559–580. Zbl. 161. 15207

    Google Scholar 

  • Ibragimov, I.A., and Linnik, Yu.V. (1965): Independent and Stationarily Connected Sequences of Variables. Nauka, Moscow. Zbl. 154.42201. Engl. transi.: Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (1971). Zbl. 219. 60027

    Google Scholar 

  • Katz, M. (1963): Note on the Berry—Esseen theorem. Ann. Math. Stat. 34, No. 3, 1107–1108. Zbl. 122. 36704

    Google Scholar 

  • Klass, M.J., and Tomkins, R.J. (1984): On the limiting behavior of normed sums of independent variables. Z. Wahrscheinlichkeitstheorie Verw. Geb. 68, No. 1, 107–120, Zbl. 552. 60026

    Google Scholar 

  • Komlôs, J., Major, P., and Tusnâdy, G. (1975): An approximation of partial sums of independent RV’s, and the sample DF, I, II. Z. Wahrscheinlichkeitstheorie Verw. Geb. 32, No. 1–2, 111–131; 34, No. 1, 33–58. Zbl. 308.60029, Zbl. 315. 60031

    Google Scholar 

  • Kruglov, V.M. (1976): Global limit theorems. Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 61, 84–191. Engl. transi.: J. Sov. Math. 16, 1396–1409. Zbl. 358. 60036

    Google Scholar 

  • Loève, M. (1960): Probability Theory. 2nd ed., Van Nostrand, Pinceton, NJ. Zbl. 095. 12201

    Google Scholar 

  • Major, P. (1976a): The approximation of partial sums of independent RV’s. Z. Wahrscheinlichkeitstheorie Verw. Geb. 35, No. 3, 213–220. Zbl. 338. 60031

    Google Scholar 

  • Major, P. (1976b): Approximation of partial sums of i.i.d.r.v’s when the summands have only two moments. Z. Wahrscheinlichkeitstheorie Verw. Geb. 35, No. 3, 221–229. Zbl. 338. 60032

    Google Scholar 

  • Major, P. (1979): An improvement of Strassen’s invariance principle. Ann. Probab. 7, No. 1, 55–61. Zbl. 392. 60034

    Google Scholar 

  • Marcinkiewicz, J.,and Zygmund, A. (1937): Remarque sur la loi du logarithme itéré. Fundam. Math. 29, 215–222. Zbl. 018.03204

    Google Scholar 

  • Martikainen, A.I. (1979a): Three theorems on the limit superior of sums of independent random variables. Vestn. Leningr. Univ., Mat. Meth. Astron., No. 1, 45–51. Engl. transl.: Vestn. Leningr. Univ. Math. 12, 29–36. Zbl. 411. 60048

    Google Scholar 

  • Martikainen, A.I. (1979b): An exponential criterion for the law of the iterated logarithm. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 85, 158–168. Engl. transl.: J. Soy. Math. 20, 2214–2221 (1982). Zbl. 417. 60042

    Google Scholar 

  • Martikainen, A.I. (1979c): On necessary and sufficient conditions for the strong law of large numbers. Teor. Veroyatn. Primen. 24, No. 4, 814–821. Engl. transl.: Theory Probab. Appl. 24, No. 4, 813–820. Zbl. 432. 60036

    Google Scholar 

  • Martikainen, A.I. (1980): A converse to the law of the iterated logarithm for a random walk. Teor. Veroyatn. Primen. 25, No. 2, 364–366. Engl. transi.: Theory Probab. Appl. 25, No. 2, 361–362. Zbl. 432. 60037

    Google Scholar 

  • Martikainen, A.I., and Petrov, V.V. (1977): On necessary and sufficient conditions for the law of the iterated logarithm. Teor. Veroyatn. Primen. 22, No. 1, 18–26; No. 2, 442. Engl. transi.: Theor. Probab. Appl. 22, No. 1, 16–23; No. 2, 430. Zbl. 377. 60036

    Google Scholar 

  • Nagaev, S.V. (1965): Some limit theorems for large deviations. Teor. Veroyatn. Primen. 10, No. 2, 231–254. Engl. transi.: Theor. Probab. Appl. 10, No. 2, 214–235. Zbl. 144. 18704

    Google Scholar 

  • Nagaev, S.V. (1972): On necessary and sufficient conditions for the strong law of large numbers. Teor. Veroyatn. Primen. 17, No. 4, 609–618. Engl. transl.: Theor. Probab. Appl. 17, No. 4, 573–581. Zbl. 276. 60035

    Google Scholar 

  • Osipov, L.V. (1966): Refinement of Lindeberg’s theorem. Teor. Veroyatn. Primen. 11, No. 2, 339–342. Engl. transl.: Theor. Probab. Appl. 11, No. 2, 299–302. Zbl. 147. 37001

    Google Scholar 

  • Osipov, L.V. (1967): Asymptotic expansions in the central limit theorem. Vestn. Leningr. Univ., Ser I 19, 45–62 (in Russian). Zbl. 189. 18003

    Google Scholar 

  • Osipov, L.V. (1968): On the closeness with which the distribution of the sum of independent random variables approximates the normal distribution. Dokl. Akad. Nauk SSSR 178, No. 5, 1013–1016. Engl. transl.: Sov. Math., Dokl. 9, No. 1, 233236. Zbl. 185. 46803

    Google Scholar 

  • Osipov, L.V. (1971): Asymptotic expansions for the distributions of sums of independent random variables. Teor. Veroyatn. Primen. 16, No. 2, 328–338. Engl. transl.: Theor. Probab. App. 16, No. 2, 333–343. Zbl. 248. 60015

    Google Scholar 

  • Osipov, L.V., and Petrov, V.V. (1967): On an estimate of the remainder term in the central limit theorem. Teor. Veroyatn. Primen. 12, No. 2, 322–329. Engl. transl.: Theor. Probab. Appl. 12, No. 2, 281–286. Zbl. 185. 46801

    Google Scholar 

  • Petrov, V.V. (1962): On some polynomials encountered in probability theory. Vestn. Leningr. Univ., Ser I 19, 150–153 (in Russian). Zbl. 128. 38003

    Google Scholar 

  • Petrov, V.V. (1965): An estimate of the deviation of the distribution of a sum of independent random variables from the normal law. Dokl. Akad. Nauk 160, No. 5, 1013–1015. Engl. transl.: Soy. Math., Dokl. 6, No. 1, 242–244. Zbl. 135. 19203

    Google Scholar 

  • Petrov, V.V. (1966): On a relation between an estimate of the remainder in the central limit theorem and the law of the iterated logarithm. Teor. Veroyatn. Primen. 11, No. 3, 514–518. Engl. transl.: Teor. Probab. Appl. 11, No. 3, 454–458. Zbl. 203. 19602

    Google Scholar 

  • Petrov, V.V. (1969): On the strong law of large numbers. Teor. Veroyatn. Primen. 14, No. 2, 193–202. Engl. transl.: Theor. Probab. Appl. 14, No. 2, 183–192. Zbl. 196. 20903

    Google Scholar 

  • Petrov, V.V. (1972): Sums of Independent Random Variables. Nauka, Moscow. Engl. transl.: Springer-Verlag, Berlin-Heidelberg — New York (1975). Zbl. 267. 60055 (Zbl. 322.60042)

    Google Scholar 

  • Petrov, V.V. (1987): Limit Theorems for Sums of Independent Random Variables. Nauka, Moscow (in Russian). Zbl. 621. 60022

    Google Scholar 

  • Petrov, V.V. (1995): Limit Theorems of Probability Theory. Oxford University Press, Oxford. Zbl. 826–60357

    MATH  Google Scholar 

  • Prokhorov, Yu.V. (1950): On the strong law of large numbers. Izv. Akad. Nauk SSSR, Ser. Mat. 14, No. 6, 523–536 (in Russian). Zbl. 040. 07301

    Google Scholar 

  • Prokhorov, Yu.V. (1959): Some remarks on the strong law of large numbers. Teor. Veroyatn. Primen. 4, No. 2, 215–220. Engl. transl.: Theor. Probab. Appl. 4, No. 2, 204–208. Zbl. 089. 13903

    Google Scholar 

  • Pruitt, W.E. (1981): General one-sided laws of the iterated logarithm. Ann. Probab. 9, No. 1, 1–48. Zbl. 462. 60030

    Google Scholar 

  • Révész, P. (1967): The Laws of Large Numbers. Akadémiai Kiad6, Budapest and NewYork, Academic Press, 1968. Zbl. 203. 50403

    Google Scholar 

  • Rosalsky, A. (1980): On the converse to the iterated logarithm law. Sankhya A42, No. 1–2, 103–108. Zbl. 486. 60031

    Google Scholar 

  • Rozovskii, L.V. (1975): Asymptotic expansions in the central limit theorem. Teor. Veroyatn. Primen. 20, No. 4, 810–820. Engl. transi.: Theory Probabl. Appl. 20, Mno. 4, 794–804. Zbl. 347. 60020

    Google Scholar 

  • Rozovskii, L.V. (1978a): On a lower bound for the remainder in the central limit theorem. Mat Zametki 24, No. 3, 403–410. Engl. transi.: Math. Notes 24, No. 3–4, 715–719. Zbl. 396. 60026

    Google Scholar 

  • Rozovskii, L.V. (1978b): On the exactness of an estimate of the remainder term in the central limit theorem. Teor. Veroyatn. Primen. 24, No. 4, 744–761. Engl. transi.: Theory Probabl. Appl. 23, No. 4, 712–730. Zbl. 388. 60026

    Google Scholar 

  • Sakhanenko, A.I. (1984): Rate of convergence in an invariance principle for non-identically distributed variables with exponential moments. Tru. Inst. Mat. 3, 4–49. Engl. transl.: Advances in Pribability Theory, Transi. for Math. Engl. 2–73 (1986). Zbl. 541. 60024

    Google Scholar 

  • Sakhanenko, A.I. (1985): Estimates in an invariance principle, Tru. Inst. Mat. 5, 27–44 (in Russian). Zbl. 585. 60044

    Google Scholar 

  • Stout, W.F. (1974): Almost Sure Convergence, Academic Press, New York. Zbl. 321. 60022

    Google Scholar 

  • Strassen, V. (1964): An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie Verw. Geb. 3, No. 3, 211–226. Zbl. 132. 12903

    Google Scholar 

  • Strassen, V. (1966): A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie Verw. Geb. 4, 265–268. Zbl. 141. 16501

    Google Scholar 

  • Tomkins, R.J. (1980): Limit theorems without moment hypotheses for sums of in- dependent random variables. Ann. Probab. 8, No. 2, 314–324. Zbl. 432. 60034

    Google Scholar 

  • Tomkins, R.J. (1991): Refinements of Kolmogorov’s law of the iterated logarithm. Stat. Probab. Lett. 14, No. 4, 321–325 (1992), Zbl. 756. 60033

    Google Scholar 

  • Weiss, M. (1959): On the law of the iterated logarithm. J. Math. Mech. 8, No. 1, 121–132. Zbl. 091. 14206

    Google Scholar 

  • Zolotarev, V.M. (1986): Modern Theory of Summation of Independent Random Variables. Nauka, Moscow (in Russian). Engl. transi.: VSP, Utrecht (1997). Zbl. 649. 60016

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petrov, V.V. (2000). Classical-Type Limit Theorems for Sums of Independent Random Variables. In: Prokhorov, Y.V., Statulevičius, V. (eds) Limit Theorems of Probability Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04172-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04172-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08170-5

  • Online ISBN: 978-3-662-04172-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics