Skip to main content
  • 1014 Accesses

Abstract

In all previous chapters, we have considered linear elasticity, which is the simplest -although most widely used- material model. Most engineering materials have a linear elastic behavior at the early stages of deformation. However, when certain criteria are reached, several materials (e.g., metals) undergo irreversible, or permanent or plastic deformations. In this chapter, we present constitutive equations and computational algorithms for rate-independent elasto-plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Hill, R. (1950), The mathematical theory of plasticity, Clarendon Press, Oxford University Press, England, reprinted, 1989.

    MATH  Google Scholar 

  • Prager, W. & P.G. Hodge, Jr. (1951), Theory of perfectly plastic solids, John Wiley & Sons, New York.

    Google Scholar 

  • Johnson, W. & P.B. Mellor (1962), Plasticity for mechanical engineers, D. Van Nostrand Co., London.

    Google Scholar 

  • Nadai, A.L. (1963), Theory of flow and fracture of solids. Volume II, McGraw Hill Book Co., New York.

    Google Scholar 

  • Thomsen, E.G., C.T. Yang & S. Kobayashi (1965), Mechanics of plastic deformation in metal processing,The MacMillan Co., New York.

    Google Scholar 

  • Mandel, J. (1966), Cours de Mécanique des milieux continus. II- Mécanique des solides, Gauthier-Villars, Paris, France.

    Google Scholar 

  • Kachanov, L.M. (1971), Foundations of the theory of plasticity, North-Holland Publishing Co., Amsterdam.

    MATH  Google Scholar 

  • Lubliner, J. (1990), Plasticity theory, Macmillan Publishing Company, New York.

    MATH  Google Scholar 

  • Hodge, P.G., Jr. (1959), Plastic analysis of structures, McGraw Hill Book Co., New York.

    MATH  Google Scholar 

  • Massonnet, Ch. & Save, M. (1967), Calcul plastique des contructions. I- Structures dépendant d’un paramètre, 2nd edition, Centre Belgo-Luxembourgeois de l’acier, Brussels, Belgium

    Google Scholar 

  • Calladine, C.R. (1969), Engineering plasticity, Pergamon Press, Oxford.

    Google Scholar 

  • Save, M. & Ch. Massonnet (1972), Calcul plastique des contructions. II- Structures dépendant de plusieurs paramètres, 2nd edition, Centre Belgo-Luxembourgeois de l’acier, Brussels, Belgium.

    Google Scholar 

  • Massonnet, Ch., Olszak and A. Phillips (1979), Plasticity in structural engineering: fundamentals and applications, publication no. 241, CISM, Udine, Italy.

    Google Scholar 

  • Stronge, W.J. & T.X. Yu (1993), Dynamic models for structural plasticity, Springer-Verlag, London.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doghri, I. (2000). Elasto-plasticity. In: Mechanics of Deformable Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04168-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04168-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08629-8

  • Online ISBN: 978-3-662-04168-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics