Jeux de tableaux

  • Tom Roby
  • Frank Sottile
  • Jeffrey Stroomer
  • Julian West
Conference paper

Abstract

We study four operations defined on pairs of tableaux. Algorithms for the first three involve the familiar procedures of jeu de taquin, row insertion, and column insertion, respectively. The fourth operation of hopscotch is new, although specialised versions have appeared previously. Like the other three operations, hopscotch may be computed with a set of local rules in a growth diagram, and it preserves Knuth equivalence class. Each of these four operations gives rise to an a priori distinct theory of dual equivalence. We show that these four theories coincide. The four operations are linked via the involutive tableau operations of complementation and conjugation.

Keywords

Boulder 

Résumé

Nous étudions quatre opérations définies sur les paires de tableaux de Young. Les algorithmes pour trois des opérations impliquent les procédures familières de jeu de taquin, l’insertion par rangs, et l’insertion par colonnes, respectivement. La quatrième opération de hopscotch est nouvelle, bien que les versions spécialisiés aient apparu précédemment. Comme les trois autres opérations, hopscotch peut être calculée avec une série de règles locales dans un diagramme de croissance, et elle conserve la classe d’équivalence de Knuth. Chacune de ces quatre opérations engendre un théorie a priori distincte d’équivalence duale. Nous montrons que ces quatre théories coïncident. Les quatre opérations sont reliées par les opérations involutives de complémentation et de conjugaison.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Benkart, F. Sottile, AND J. Stroomer, Tableau switching: Algorithms and applications, J. Combin. Theory Ser. A, 76 (1996), pp. 11–43.MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Fomin, The generalized Robinson-Schensted-Knuth correspondence, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155 (1986), pp. 156175, 195.Google Scholar
  3. 3.
    M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math., 99 (1992), pp. 79–113.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    D. Knuth, Permutations, matrices and generalized Young tableaux, Pacific J. Math., 34 (1970), pp. 709–727.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    M. Van Leeuwen, The Robinson-Schensted and Schützenberger algorithms, an elementary approach, Electronic J. Combin., 3 (1996), #R15. Foata Feitschrift.Google Scholar
  6. 6.
    G. De B. Robinson, On the representations of S n, Amer. J. Math., 60 (1938), pp. 745–760.CrossRefGoogle Scholar
  7. 7.
    T. Roby, Applications and extensions of Fornin’s generalization of the RobinsonSchensted correspondence to differential posets, PhD thesis, MIT, 1991.Google Scholar
  8. 8.
    T. Roby, F. Sottile, J. Stroomer, AND J. West, Complementary tableaux operations. in preparation,arXiv.org/math. CO/0002244, 2000.Google Scholar
  9. 9.
    B. Sagan and R. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory, Ser. A, 55 (1990), pp. 161–193.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    C. Schensted, Longest increasing and decreasing subsequence, Can. J. Math., 13 (1961), pp. 179–191.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    M.-P. Schützenberger, Quelques remarques sur une construction de Schensted, Math. Scand., 12 (1963), pp. 117–128.MathSciNetMATHGoogle Scholar
  12. 12.
    M.-P. Schützenberger,La correspondence de Robinson, in Combinatoire et Représentation du Groupe Symétrique, D. Foata, ed., vol. 579 of Lecture Notes in Math., Springer-Verlag, 1977, pp. 59–135.Google Scholar
  13. 13.
    R. Stanley, Enumerative Combinatorics Volume 2, no. 62 in Cambridge Studies in Advanced mathematics, Cambridge University Press, 1999. With appendix 1 by Sergey Fomin.Google Scholar
  14. 14.
    J. Stembridge, Rational tableaux and the tensor algebra of gl n, J. Combin. Theory, Ser. A, 46 (1987), pp. 79–120.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J. Stroomer, Insertion and the multiplication of rational Schur functions, J. Combin. Theory, Ser. A, 65 (1994), pp. 79–116.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    G. Tesler, Semi-primary Lattices and Tableau Algorithms. Ph.D. Thesis, MIT, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Tom Roby
    • 1
  • Frank Sottile
    • 2
  • Jeffrey Stroomer
    • 3
  • Julian West
    • 4
  1. 1.Department of MathematicsCalifornia State UniversityHaywardUSA
  2. 2.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  3. 3.XilinxIncorporatedBoulderUSA
  4. 4.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations