Skip to main content

Heterothermy in Mousebirds: Evidence of Avian Proto-torpor?

  • Conference paper
Life in the Cold

Abstract

Patterns of normothermy and heterothermy in two mousebird species differed in several respects from typical endothermic patterns. Primarily, heterothermic responses in Colius striatus lacked the entry and maintenance phases characteristic of typical torpor bouts. These observations suggest that mousebirds may exhibit “proto-torpor”, a form of torpor intermediate between hypothesized ancestral wide-amplitude Tb cycling and modern heterothermy. Clustering behaviour also formed an obligatory component of thermoregulation, and was necessary for the defence of a constant Tb during the rest-phase. The evolution of typical avian torpor appears to have been arrested in the mousebirds by the development of sociality and clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartholomew GA, Howell TR, Cade TJ (1957) Torpidity in the white-throated swift, Anna hummingbird, and poor-will. Condor 59: 145–155

    Article  Google Scholar 

  • Bartholomew GA, Trost CH (1970) Temperature regulation in the speckled mousebird, Colius striatus. Condor 72: 141–146

    Article  Google Scholar 

  • Bech C., Abe AS, Steffensen JF, Berger M, Bicudo JEPW (1997) Torpor in three species of Brazilian hummingbirds under semi-natural conditions. Condor 99: 780–788

    Article  Google Scholar 

  • Boix-Hinzen C, Lovegrove BG (1998) Circadian metabolic and thermoregulatory patterns of red-billed woodhoopoes (Phoeniculus purpureus): the influence of huddling. J. Zool., Lond 244: 33–41

    Article  Google Scholar 

  • Brigham RM (1992) Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol. Zool. 65: 457–472

    Google Scholar 

  • Fry CH, Keith S, Urban EK (1988) The Birds of Africa Vol. 3. Academic Press, London.

    Google Scholar 

  • Geiser F (1998) Evolution of daily torpor and hibernation in birds and mammals: importance of body size. Clin. Exp. Pharmacol. Physiol. 25: 736–740

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68: 935–966

    Google Scholar 

  • Hiebert S (1990) Energy costs and temporal organization of torpor in the rufous hummingbird (Selasphorus rufus). Physiol. Zool. 63: 1082–1097

    Google Scholar 

  • Hoffmann R, Prinzinger R (1984) Torpor und Nahrungsausnutzung bei 4 Mausvogelarten (Coliiformes). J. Orn. 125L: 225–237

    Article  Google Scholar 

  • Krüger K, Prinzinger R, Schuchmann KL (1982) Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. 73A: 679–689

    Article  Google Scholar 

  • Lovegrove BG, Lawes MJ, Roxburgh L (1999) Confirmation of plesiomorphic daily torpor in mammals: the rounded-eared elephant shrew Macroscelides proboscideus (Macroscelidea). J. Comp. Physiol. 169: 453–460

    CAS  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York.

    Google Scholar 

  • Malan A (1996) The origins of hibernation: a reappraisal. In: Geiser F, Hulbert, AJ, Nicol SC (eds) Adaptations to the cold: Tenth International Hibernation Symposium. Armidale: University of New England Press, pp. 1–6

    Google Scholar 

  • Prinzinger R, Göppel R, Lorenz A, Kulzer E (1981) Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor. Comp. Biochem. Physiol. 69A: 689–692

    Article  Google Scholar 

  • Prinzinger R, Preßmar A, Schleucher E (1991) Body temperature in birds. Comp. Biochem. Phvsiol. 99A: 499–506

    Article  Google Scholar 

  • Reinertsen RE (1996) Physiological and ecological aspects of hypothermia. In: C. Carey (ed) Avian energetics and nutritional ecology: Chapman & Hall, pp. 125–157

    Chapter  Google Scholar 

  • Rich PV, Haarhoff PJ (1985) Early Pliocene Coliidae (Aves, Coliiformes) from Langebaanweg, South Africa. Ostrich 56: 20–41

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McKechnie, A.E., Lovegrove, B.G. (2000). Heterothermy in Mousebirds: Evidence of Avian Proto-torpor?. In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04162-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08682-3

  • Online ISBN: 978-3-662-04162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics