Skip to main content

Mitochondrial Proton Conductance, Standard Metabolic Rate and Metabolic Depression

  • Conference paper
Life in the Cold

Abstract

Proton cycling across the mitochondrial inner membrane makes up a significant proportion (20–30%) of Standard Metabolic Rate (SMR) in rats. If proton cycling is equally important in other animals, those that metabolically depress to 25% or less of SMR have a problem: either their entire energy budget will be wasted by proton cycling, or they have to suppress the leak of protons across the mitochondrial membrane. Muscle mitochondria from metabolically depressed, hypoxic overwintering frogs (Rana temporaria) do have decreased proton leak rate. This is achieved not by decreasing the proton conductance of the membrane, but by lowering the protonmotive force (the driving force for the leak). Protonmotive force is lowered aerobically by restricting electron supply, and in anoxia by restricting mitochondrial ATPase activity. There is also a temperature component to the physiological depression of overwintering frogs. The proton conductance of frog muscle mitochondria decreases steeply with temperature. Frog hepatocytes also respond strongly to temperature, and decrease their proton cycling in parallel to other reactions, so preserving metabolic efficiency at different temperatures. Hepatopancreas cells from the land snail (Helix aspersa) provide a good new model system to study biochemical mechanisms of depression without the complications of temperature change. Cells from aestivating animals show a persistent metabolic depression to 30% of controls, partly through intrinsic effects and partly through the extrinsic effects of pH and pO2. In depressed cells, proton cycling decreases at least as much as cellular respiration rate. These results using frogs and snails show that mitochondrial proton cycling is strongly suppressed in metabolic depression, so that metabolic efficiency is maintained or even enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainscow EK, Brand MD (1999) The responses of hepatocytes to glucagon and adrenaline: application of quantified elasticity analysis. Eur J Biochem 265: 1043–1055

    Article  PubMed  CAS  Google Scholar 

  • Barnhart MC (1983) Gas permeability of the epiphragm of a terrestrial snail, Otala lactea. Physiol Zool 56: 436–444

    Google Scholar 

  • Boutilier RG, Donohoe PH, Tattersall GJ, West TG (1997) Hypometabolic homeostasis in overwintering aquatic amphibians. J Exp Biol 200: 387–400

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Glass ML, Heisler, N (1986) The relative distribution of pulmocutaneous blood flow in Rana catesbeiana: effects of pulmonary or cutaneous hypoxia. J Exp Biol 126: 33–39

    PubMed  CAS  Google Scholar 

  • Blaxter, K. (1989) Energy metabolism in animals and man. Cambridge University Press, Cambridge

    Google Scholar 

  • Bradford DF (1983) Winterkill, oxygen relations, and energy metabolism of a submerged dormant amphibian, Rana muscosa. Ecology 64: 1171–1183

    Article  Google Scholar 

  • Brand MD, Couture P, Else PL, Wither, KW, Hulbert AJ (1991) Evolution of energy metabolism: proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J 275: 81–86

    PubMed  CAS  Google Scholar 

  • Brand MD, Chien L-F, Ainscow EK, Rolfe DFS, Porter, R.K. (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187: 132–139

    Article  PubMed  CAS  Google Scholar 

  • Buck LT, Land SC, Hochachka PW (1993) Anoxia-tolerant hepatocytes: a model system for the study of metabolic suppression. Am J Physiol 265: R49-R56

    PubMed  CAS  Google Scholar 

  • Donohoe PH, Boutilier RG (1998) The protective effects of metabolic rate depression in hypoxic cold submerged frogs. Respir Physiol 111: 325–336

    Article  PubMed  CAS  Google Scholar 

  • Donohoe PH, West TG, Boutilier RG (1998) Respiratory, metabolic, and acid-base correlates of aerobic metabolic rate reduction in overwintering frogs. Am J Physiol 43: R704-R710

    Google Scholar 

  • Dufour S, Rousse N, Canioni P, Diolez P(1996) Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J 314: 743–751

    PubMed  CAS  Google Scholar 

  • Flanigan JE, Guppy M (1997) Metabolic depression and sodium-potassium ATPase in the aestivating frog, Neobatrachus kunapalari. J Comp Physiol 167B: 135–145

    Google Scholar 

  • Guppy M, Reeves DC, Bishop T, Withers P, Buckingham JA, Brand MD (2000) Intrinsic metabolic depression in cells isolated from the hepatopancreas of aestivating snails. FASEB. J. in press.

    Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalisations. Biol Rev, 74: 1–40

    Article  PubMed  CAS  Google Scholar 

  • Hand SC, Hardewig, I(1996) Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 58: 539–563

    Article  PubMed  CAS  Google Scholar 

  • Harrison R(1997) Human xanthine oxidase: in search of a function. Biochem Soc Trans 25: 786–791

    PubMed  CAS  Google Scholar 

  • Krumschnabel G, Weiser W(1994) Inhibition of the sodium pump does not cause a stoichiometric decrease of ATP production in energy-limited fish hepatocytes. Experientia 50: 483–485

    Article  CAS  Google Scholar 

  • Lardy HA, Johnson D, McMurray WC (1958) Antibiotics as tools for metabolic studies 1. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys 78: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Brown GC, Olive PN, Brand MD (1990) Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem 265: 12903–12909

    PubMed  CAS  Google Scholar 

  • Pedler S, Fuery CJ, Withers PC, Flanigan J, Guppy M (1996) Effectors of metabolic depression in an aestivating pulmonate snail (Helix aspersa): whole animal and in vitro tissue studies. J Comp Physiol 166: 375–381

    CAS  Google Scholar 

  • Pinder AW, Storey KB, Ultsch GR (1992) Aestivation and hibernation. In: Feder ME, Burggren WW (eds) Environmental Physiology of the Amphibians. The University of Chicago Press, Chicago, pp 250–274

    Google Scholar 

  • Rolfe DFS, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physio1271: C1380-C1389

    Google Scholar 

  • Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Phvsiol Rev 77: 731–758

    CAS  Google Scholar 

  • Rolfe DFS, Newman JMB, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Phvsiol 276:. C692-C699

    Google Scholar 

  • St-Pierre J, Brand MD, Boutilier RG (2000) The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. J Exp Bio1203 (in press)

    Google Scholar 

  • Tattersall GJ, Boutilier RG (1997) Balancing hypoxia and hypothermia in cold-submerged frogs. J Exp Biol 200: 1031–1038

    PubMed  CAS  Google Scholar 

  • Thierbach G, Reichenbach H (1981) Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of the respiratory chain. Biochim Biophys Acta 638: 282–289

    Article  PubMed  CAS  Google Scholar 

  • Van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61: 157–197

    Article  PubMed  Google Scholar 

  • West TG, Boutilier RG (1998) Metabolic suppression in anoxic frog muscle. J Comp Physiol 168B: 273–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brand, M.D., Bishop, T., Boutilier, R.G., St-Pierre, J. (2000). Mitochondrial Proton Conductance, Standard Metabolic Rate and Metabolic Depression. In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04162-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08682-3

  • Online ISBN: 978-3-662-04162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics