Advertisement

Daily Heterothermy in Mammals: Coping with Unpredictable Environments

  • Barry G. Lovegrove
Conference paper

Abstract

Zoogeographical patterns of daily heterothermy in mammals show that the Afrotropical and Australasian zones have the highest number of species, genera and orders exhibiting daily torpor. The Palaearctic has the lowest incidence of daily torpor. The Australasian and the Afrotropical zones also showed the highest incidences of summer torpor and torpor in desert species. These patterns suggest an association of daily torpor with unpredictable environments (low inclement energetic gains), versus an association of hibernation with predictably cold seasons (high inclement energetic costs).

Keywords

Mouse Lemur Daily Torpor Desert Species Elephant Shrew Honey Possum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan R, Lindesay J, Park LO (1996) El Niño Southern Oscillation and climatic variability. Collingwood, CSIRO AustraliaGoogle Scholar
  2. Arnold JM (1976) Growth and bioenergetics of the Chuditch, Dasyurus geoffroii. University of Western Australia, PerthGoogle Scholar
  3. Aujard F, Perret M, Vannier G (1998) Thermoregulatory responses to variations of photoperiod and ambient temperatue in the male lesser mouse lemur: a primitive or an advanced character? J Comp Physi ol B 168: 540–548CrossRefGoogle Scholar
  4. Bartholomew GA, Dawson WR, Lasiewski RC (1970) Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z vergl Physiologie 70: 196–209CrossRefGoogle Scholar
  5. Bartholomew GA, MacMillen RE (1961) Oxygen consumption, estivation, and hibernation in the kangaroo mouse, Microdipodops pallidus. Physiol Zool 34: 177–183Google Scholar
  6. Baxter RM (1996) Evidence for spontaneous torpor in Crocidura flavescens. Acta Theriol 41: 327–330Google Scholar
  7. Bennett NC, Spinks AC (1995) Thermoregulation and metabolism in the Cape golden mole (Insectivora: Chrysochloris asiatica). J Zool, Lond 236: 521–529CrossRefGoogle Scholar
  8. Bonaccorso FJ, McNab BK (1997) Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J Mamm 78: 1073–1088CrossRefGoogle Scholar
  9. Bozinovic F, Marquet PA (1991) Energetics and torpor in the Atacama desert-dwelling rodent Phyllotis darwini rupestris. J Mamm 72: 734–738CrossRefGoogle Scholar
  10. Bozinovic F, Rosenmann M (1988) Daily torpor in Calomys musculinus, a South American rodent. J Mamm 69: 150–152CrossRefGoogle Scholar
  11. Brown CR, Bernard RTF (1994) Thermal preference of Schreiber’s long-fingered (Miniopterus schreiberisii) and Cape horseshoe (Rhinolophus capensis) bats. Comp Biochem Physiol [A] 107A: 439–449CrossRefGoogle Scholar
  12. Buffenstein R (1985) The effect of starvation, food restriction, and water deprivation on thermoregulation and average daily metabolic rates in Gerbillus pusillus. Physiol Zool 58: 320–328Google Scholar
  13. Caraco T (1980) On foraging time allocation in a stochastic environment. Ecol 61(1): 119–128CrossRefGoogle Scholar
  14. Caviiedes-Vidal E, Codelia EC, Roig V, Dona R (1990) Facultative torpor in the South American rodent Calomys venustus (Rodentia: Cricetidae). J Mamm 71: 72–75CrossRefGoogle Scholar
  15. Chang WYB (1997) ENSO: extreme climate events and impacts on Asian deltas. Journal of The American Water Resources Association 33: 605–614CrossRefGoogle Scholar
  16. Coburn DK, Geiser F (1998) Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecol 113: 467–473CrossRefGoogle Scholar
  17. Diamond JM (1986) How to gamble on physiological requirements. NIPS 1: 208–210Google Scholar
  18. Eliott JA, Bartness T, Goldman BD (1987) Role of short photoperiod and cold exposure in regulating daily torpor in Djungarian hamsters. J Comp Physiol A 161: 245–253CrossRefGoogle Scholar
  19. Ellison GTH (1995) Thermoregulatory responses of cold-acclimated fat mice (Steatomys pratensis). J Mamm 76: 240–247CrossRefGoogle Scholar
  20. Fleming MR (1980) Thermoregulation and torpor in the sugar glider, Petaurus breviceps (Marsupialia: Petauridae). Aust J Zool 28: 521–534CrossRefGoogle Scholar
  21. Florant G (1998) Lipid metabolism in hibernators: the importance of essential fatty acids. Amer Zool 38: 331–340Google Scholar
  22. Fons R, Sicart R (1976) Contribution á la connaissance du métabolism énergétique chez deux Crocidurinae: Suncus etruscus (Savi, 1822) et Crossidura russala (Hermann, 1790) (Insectivora, Soricidae). Mamm 40: 299–311CrossRefGoogle Scholar
  23. Frank CL (1992) The influence of dietary fatty acids on hibernation by Golden-mantled ground squirrels (Spermophilus lateralis). Physiol Zool 65: 906–920Google Scholar
  24. Geiser F (1985) Tagesschlaflethargie bei der gelbfüssigen Breitfussbeutelspitzmaus, Antechinus flavipes (Marsupialia: Dasyuridae). Z Saügertierk 50: 125–127Google Scholar
  25. Geiser F (1986) Thermoregulation and torpor in the kultarr, Antechinomys laniger. J Comp Physiol 156B: 751–757Google Scholar
  26. Geiser F (1988) Daily torpor and thermoregulation in Antechinus (Marsupialia): influence of body mass, season, development, reporoduction, and sex. Oecol 77: 395–399CrossRefGoogle Scholar
  27. Geiser F (1998) Evolution of daily torpor and hibernation in birds and mammals: importance of body size. Clin Exp Pharmcol Physiol 25: 736–740CrossRefGoogle Scholar
  28. Geiser F, Augee ML, McCarron HCK, Raison JK (1984) Correlates of torpor in the insectivorous dasyurid marsupial Sminthopsis murina. Aust Mamm 7: 185–191Google Scholar
  29. Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol 157B: 335–344Google Scholar
  30. Geiser F, Baudinette RV (1988) Daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Aust J Zool 36: 473–481CrossRefGoogle Scholar
  31. Geiser F, Heldmaier G (1995) The impact of dietary fats, photoperiod, temperature and season on morphological variables, torpor patterns, and brown adipose tissue fatty acid composition of hamsters, Phodopus sungorus. J Comp Physiol [B] 165: 406–415Google Scholar
  32. Geiser F, Masters P (1994) Torpor in relation to reproduction in the mulgara, Dasycercus cristicauda (Dasyuridae: Marsupialia). J therm Biol 19: 33–40CrossRefGoogle Scholar
  33. Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: Physiological variables and classification of torpor patterns. Physiol Zool 68: 935–966Google Scholar
  34. Geiser F, Stahl B, Learmonth RP (1992) The effect of dietary fatty acids on the pattern of torpor in a marsupial. Physiol Zool 65: 1236–1245Google Scholar
  35. Glantz M, Katz R, Nicholls N (1991) ENSO teleconnections linking worldwide climate anomalies: Scientific basis and societal impacts. Cambridge, Cambridge University PressGoogle Scholar
  36. Goldman BD, Darrow JM, Duncan MJ, Yogev L (1986) Photoperiod, reproductive hormones, and winter torpor in three hamster species. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. New York, Elsevier, pp 331–340Google Scholar
  37. Gopinathan CK (1997) Impact of 1990–’95 ENSO/WEPO event on Indian monsoon rainfall. Indian J Mar Sci 26: 258–262Google Scholar
  38. Harger JRE (1995a) Air temperature variations and ENSO effects in Indonesia, the Philippines and El Salvador. ENSO patterns and changes from 1866 – 1993. Atmos Environ 29: 1919–1942CrossRefGoogle Scholar
  39. Harger JRE (1995b) ENSO variations and drought occurrence in Indonesia and the Philippines. Atmos Environ 29: 1943–1955CrossRefGoogle Scholar
  40. Harlow HJ (1981) Torpor and other physiological adaptations of the badger (Taxidea taxus) to cold environments. Physiol Zool 54: 267–275Google Scholar
  41. Heldmaier G(1989) Seasonal acclimatization of energy requirements in mammals: functional significance of body weight control, hypothermia, torpor and hibernation. In: Wieser W, Gnaiger E (eds) Energy transformations in cells and organisms. Stuttgart, Georg Thieme Verlag, pp 130–139Google Scholar
  42. Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol [A] 51: 413–423CrossRefGoogle Scholar
  43. Houston A, McNamara J (1985) The choice of two prey types that minimises the probability of starvation. Behav Ecol Sociobiol 17: 135–141Google Scholar
  44. Hudson JW (1965) Temperature regulation and torpidity in the pygmy mouse, Baiomys taylori. Physiol Zool 38: 243–254Google Scholar
  45. Hudson JW, Scott IM (1979) Daily torpor in the laboratory mouse, Mus musculus var. Albino. Physiol Zool 52: 205–218Google Scholar
  46. Kitayama K (1996) Climate of the summit region of Mount Kinabalu (Borneo) in 1992, an El Nino year. Mt Res Dev 16: 65–75CrossRefGoogle Scholar
  47. Kulzer E, Storf R (1980) Schlaf-Lethargie bei dem afrikanischen Langzungenflughund Megaloglossus woermanii Pagenstecher, 1885. Z Saügertierk 45: 409–532Google Scholar
  48. Lawes MJ, Perrin MR (1995) Risk sensitive foraging behaviour of the round-eared elephant shrew (Macroscelides proboscideus). Behav Ecol Sociobiol 37: 31–37CrossRefGoogle Scholar
  49. Lovegrove BG (1993) The Living Deserts of Southern Africa. Cape Town, Fernwood PressGoogle Scholar
  50. Lovegrove BG (1996) The low basal metabolic rates of marsupials: the influence of torpor and zoogeography. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: Tenth International Hibernation Symposium. Armidale, University of New England Press, pp 141–151Google Scholar
  51. Lovegrove BG (in press) The zoogeography of mammalian basal metabolic rate. The American NaturalistGoogle Scholar
  52. Lovegrove BG, Heldmaier G, Ruf T (1991) Perspectives of endothermy revisited: the endothermic temperature range. J therm Biol 16: 185–197CrossRefGoogle Scholar
  53. Lovegrove BG, Lawes MJ, Roxburgh L (1999) Confirmation of pleisiomorphic daily torpor in mammals: the round-eared elephant shrew Maroscelides proboscideus (Macroscelidea). J Comp Physiol B 169: 453–460PubMedCrossRefGoogle Scholar
  54. Lovegrove BG, Raman J (1998) Torpor patterns in the pouched mouse (Saccostomus camprestris; Rodentia): a model animal for unpredictable environments. J Comp Physiol B 168: 303–312PubMedCrossRefGoogle Scholar
  55. Lovegrove BG, Raman J, Perrin MR (unpublished) Daily torpor in elephant shrews (Macroscelidea: Elephantulus sp.) in response to food deprivation. Journal of Comparative Physiology BGoogle Scholar
  56. Lovegrove BG, Raman J, Perrin MR (unpublished) Heterothermy in elephant shrews (Elephantulus spp.): hibernation or daily torpor? Journal of Comparative Physiology BGoogle Scholar
  57. Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. New York, Academic PressGoogle Scholar
  58. MacMillen RE (1965) Aestivation in the cactus mouse Peromysus eremicus. Comp Biochem Physiol 16: 227–247PubMedCrossRefGoogle Scholar
  59. MacMillen RE, Nelson JE (1969) Bioenergetics and body size in dasyurid marsupials. Am J Physiol 217: 1246–1251PubMedGoogle Scholar
  60. Malan A (1996) The origins of hibernation: a reappraisal. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: Tenth International Hibernation Symposium. Armidale, University of New England Press, pp 1–6Google Scholar
  61. Maloney SK, Bronner GN, Buffenstein R (1999) Thermoregulation in the Angolan free-tailed bat Mops condylurus: a small mammal that uses hot roosts. Physiol Biochem Zool 72: 385–396PubMedCrossRefGoogle Scholar
  62. McCormick SA (1981) Oxygen consumption and torpor in the fat tailed dwarf lemur (Cheirogaleus medius): rethinking prosimian metabolism. Comp Biochem Physiol 68A: 605–610CrossRefGoogle Scholar
  63. McNab BK, Morrison P (1963) Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecol Monogr 33: 63–82CrossRefGoogle Scholar
  64. Morhardt JE (1970) Body temperature of white-footed mice (Peromyscus sp.) during daily torpor. Comp Biochem Physiol 33: 423–439PubMedCrossRefGoogle Scholar
  65. Morris S, Curtin AL, Thompson MB (1994) Heterothermy, torpor, respiratory gas exchange, water balance and the effect of feeding in Gould’s long-eared bat Nyctophilus gouldi. J Exp Biol 197: 309–335PubMedGoogle Scholar
  66. Morrison PR, McNab BK (1962) Daily torpor in a Brasialian murine opossum (Marmosa). Comp Biochem Physiol 6: 57–68CrossRefGoogle Scholar
  67. Morton SR, Lee AK (1978) Thermoregulation and metabolism in Planigale maculata (Marsupiala: Dasyuridae). J therm Biol 3: 117–120CrossRefGoogle Scholar
  68. Mutch GP, Aleksiuk M (1977) Ecological aspects of winter dormancy in the striped skunk (Mephitis mephitis). Can J Zool 55: 607–615CrossRefGoogle Scholar
  69. Nagel A (1977) Torpor in the European white-toothed shrews. Exp 33: 1455–1456CrossRefGoogle Scholar
  70. Nagel VA (1985) Sauerstoffverbrauch, Temperaturegulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae). Z Saügertierk 50: 249–266Google Scholar
  71. Nicol SC, Andersen NA (1996) Hibernation in the echidna: not an adaptation to cold? In: Geiser F, Hulbert AJ, Nicol SC (eds) Adapatations to the cold: Tenth International Hibernation Symposium. Armidale, University of New England Press, pp 7–12Google Scholar
  72. Ortmann S, Schmid J, Ganzhorn JU, Heldmaier G (1996) Body temperature and torpor in a Malagasy small primate, the mouse lemur. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: Tenth International Hibernation Symposium. Armidale, University of New England Press, pp 55–61Google Scholar
  73. Pohl H (1987) Control of annual rhythms of reproduction and hibernation by photoperiod and temperature in the Turkish hamster. J therm Biol 12(2): 119–123CrossRefGoogle Scholar
  74. Porter CA, Goodman M, Stanhope MJ (1996) Evidence on mammalian phylogeny from sequences of Exon 28 of the von Willebrand Factor Gene. Mol Phylogenet Evol 5: 89–101PubMedCrossRefGoogle Scholar
  75. Predavec M (1997) Variable energy demands in Pseudomys hermannsburgensis: possible eological consequenses. Aust J Zool 45: 85–94CrossRefGoogle Scholar
  76. Rathbun GB (1979) The social structure and ecology of elephant shrews. Springer-Verlag, BerlinGoogle Scholar
  77. Real LA (1980) Fitness, uncertainty, and the role of diversificiation in evolution and bahaviour. Am Nat 115(5): 623–638CrossRefGoogle Scholar
  78. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns asscoiated with the El Niño Southern Oscillation. Mon Wea Rev 115: 1606–1626CrossRefGoogle Scholar
  79. Ruf T (1991) Torpor beim Dsungarischen Zwerghamster (Phodopus sungorus) und der Hirschmaus (Peromyscus maniculatus): Saisonalität, Tagesperiodik und Energetik. Ph.D. Dissertation, Philipps University, MarburgGoogle Scholar
  80. Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ (1997) Endemic African mammals shake the phylogenetic tree. Nat 388: 61–64CrossRefGoogle Scholar
  81. Stanhope MJ, Smith MR, Waddell VG, Porter CA, Shivji MS, Goodman M (1996) Mammalian evolution and the Interphotoreceptor Retinoid Binding Protein (IRBP) Gene: evidence for several superordinal clades. J Mol Evol 43: 83–92PubMedCrossRefGoogle Scholar
  82. Steinlechner S, Heldmaier G, Weber C, Ruf T (1986) Role of photoperiod: pineal gland interaction in torpor control. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptation. New York, Elsevier, pp 301–307Google Scholar
  83. Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nat 384: 252–255CrossRefGoogle Scholar
  84. Tannenbaum MG, Pivorun EB (1984) Differences in daily torpor patterns among three southeastern species of Peromyscus. J Comp Physiol B 154: 233–236CrossRefGoogle Scholar
  85. Tannenbaum MG, Pivorun EB (1989) Summer torpor in Montane Peromyscus maniculatus. Am Midl Nat 121: 194–197CrossRefGoogle Scholar
  86. Thompson SD (1985) Subspecific differences in metabolism, thermoregulation, and torpor in the western harvest mouse Reithrodontomys megalotis. Physiol Zool 58: 430–444Google Scholar
  87. Tucker VA (1965) Oxygen consumption, thermal conductance, and torpor in the California pocket mouse, Perognathus californicus. J Cell Comp Physiol 65: 393–404CrossRefGoogle Scholar
  88. Udvardy MDF (1975) A classification of the biogeographical provinces of the world. IUCN Occasional Papers 18: 1–50Google Scholar
  89. Wang LCH, Hudson JW (1970) Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comp Biochem Phvsiol 32: 275–293CrossRefGoogle Scholar
  90. Weiner J (1989) Metabolic constraints to mammalian energy budgets. Acta Theriol 34(1): 3–35Google Scholar
  91. Withers PC (1992) Comparative animal physiology. Orlando, Saunders CollegeGoogle Scholar
  92. Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37: 685–693CrossRefGoogle Scholar
  93. Zar JH (1984) Biostatistical analysis. New Jersey, Prentice-Hall International, Inc.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Barry G. Lovegrove
    • 1
  1. 1.School of Botany and ZoologyUniversity of NatalScottsvilleSouth Africa

Personalised recommendations