Skip to main content

Intermittent Ventilation in Hibernating Dormice — Is Ventilation always Necessary to Meet Metabolic Demands?

  • Conference paper
Life in the Cold

Abstract

During hibernation, edible dormice (Glis glis) breathe intermittently. The breaths are grouped into ventilation bursts, interspaced by periods of apnea. The duration of apnea is temperature dependent and increases with decreasing ambient temperature (Ta). The duration of apnea ranges between 10 minutes at 15°C and one hour at 4°C. Gas exchange continues during apnea. During hibernation at Ta of 5°C, 33% of the total oxygen consumption (VO2) and 67% of the total carbon dioxide production (VCO2) is estimated to occur as non-ventilatory gas exchange during apnea. We assume, that the major part of apneic oxygen uptake occurs via the trachea by diffusion and not through the skin. Carbon dioxide can be released through the skin and via the trachea. Based on estimates of the oxidative cost of ventilation, we further calculate that passive gas exchange should be high enough to meet all metabolic demands during apnea in deep hibernation. All of the additional oxygen consumed during a ventilation episode appears to be required for the events associated with the ventilation episode. This raises the question, “why do dormice breathe at all during deep hibernation?”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes BM (1989) Freeze avoidance in a mammal: Body temperature below 0°C in an arctic hibernator. Science 244: 1593–1594

    Article  PubMed  CAS  Google Scholar 

  • Bianchi AL, Denavit-Saubie M, Champagnat J (1995) Central control of breathing in mammals: Neuronal circuitry, membrane properties and neurotransmitters. Am Phys Soc 75 (1): 1–45

    CAS  Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology. 2nd ed. North —Holland, Amsterdam

    Google Scholar 

  • Elvert R, Heldmaier G (2000) Telemetric observation of heart rate, ECG and body temperature in deep hibernation of edible dormice, Glis glis. Biotelemetry XV, Proceedings of the Fifteenth International Symposium on Biotelemetry, Juneau, Alaska, UJSA (in press)

    Google Scholar 

  • Feder ME, Burggren W (1985) Cutaneous gas exchange in vertebrates: Design, patterns, control and implications. Biol Rev 60: 1–45

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL (1996) Neurophysiologie of breathing in mammals. In: Bloom FE (ed) Handbook of Physiology, Section I: The Nervous System. American Physiological Society, Bethesta: 463–524

    Google Scholar 

  • Fitzgerald LR (1957) Cutaneous respiration in man. Phys Rev 37: 325–336

    CAS  Google Scholar 

  • Frappell PB, Boggs DF & Kilgore DL (1998) How stiff is the armadillo? A comparison with the allometrics of mammalian respiratory mechanics. Resp Physiol 113: 111–122

    Article  CAS  Google Scholar 

  • Fukuchi Y, Roussos CS, Macklem PT, Engel LA (1976) Convection, diffusion and cardiogenic mixing of inspired gas in the lung: An experimental approach. Resp Physiol 26: 77–90

    Article  CAS  Google Scholar 

  • Garland RJ, Milsom WK (1994) End-tidal gas composition is not correlated with episodic breathing in hibernating ground squirrels. Can J Zool 72: 1141–1148

    Article  Google Scholar 

  • Hays GC, Webb PI, Speakman JR (1991) Arrhythmic breathing in torpid pipistrelle bats, Pipistrellus pipistrellus. Resp Physiol 85: 185–192

    Article  CAS  Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus), living in natural photoperiod. J Comp Physiol B 142: 429–437

    Article  Google Scholar 

  • Herreid CF, Bretz WL, Schmidt-Nielsen, K (1968) Cutaneous gas exchange in bats. Am J Physiol 215: 506–508

    PubMed  Google Scholar 

  • Inoue H, Inoue C, Hildebrandt J (1982) Temperature effects on lung mechanics in air- and liquid-filled rabbit lungs. J Appl Phys 53(3): 567–575

    CAS  Google Scholar 

  • Kreienbühl G, Strittmatter J, Ayim E (1976) Blood gas analyses of hibernating hamsters and dormice. Pflügers Arch 366: 167–172

    Article  PubMed  Google Scholar 

  • Kristoffersson R, Soivio A (1964) Hibernation in the hedgehog (Erinaceus europaeus, L.) Ann Acad Scien Fenn 82 (AIV) 1–17

    Google Scholar 

  • Krogh A (1919) The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol 52: 391–408

    PubMed  CAS  Google Scholar 

  • Malan A (1973) Ventilation measured by body plethysmography in hibernating mammals and in poikilotherms. Resp Physiol 17: 32–44

    Article  CAS  Google Scholar 

  • Malan A (1982) Respiration and acid-base state in deep hibernation. In: Hibernation and torpor in mammals and birds. Eds: Lyman CP, Willis JS, Malan A, Wang LCH Academic Press, New York: 237–283

    Google Scholar 

  • Malan A, Arens H, Waechter A (1973) Pulmonary respiration and acid-base state in hibernating marmots and hamsters. Resp Physiol 17: 45–61

    Article  CAS  Google Scholar 

  • McArthur MD, Milson WK (1991) Changes in ventilation and respiratory sensitivity associated with hibernation in columbian (Spermophilus columbianus) and golden mantled (Spermophilus lateralis) ground squirrels. Physiol Zool 64(4): 940–959

    Google Scholar 

  • Milsorn WK, Reid WD (1995) Pulmonary mechanics of hibernating squirrels (Spermophilus lateralis). Resp Physiol 101: 311–320

    Article  Google Scholar 

  • Morris S, Curtin A, Thompson M (1994) Heterothermy, torpor, respiratory gas exchange, water balance and the effect of feeding in Gould’s long-eared bat, Nyctophilus gouldi. J Exp Biol 197: 309–335

    PubMed  CAS  Google Scholar 

  • Mortola JP, Frappell PB, Woolley PA (1999) Breathing through skin in a newborn mammal. Nature 397: 660

    Article  PubMed  CAS  Google Scholar 

  • Musacchia XJ, Volkert WA (1971) Blood gases in hibernating and active ground squirrels: HbO2 affinity at 6°C and 38°C. Am J Physiol 221(1): 128–130

    PubMed  CAS  Google Scholar 

  • Reid WD, Ng A, Wilton RK, Milsom WK (1995) Characteristics of diaphragm muscle fibre types in hibernating squirrels. Resp Physiol 101: 301–309

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K (1991) Animal physiology: adaptions and enviroment. Cambridge University press, Cambridge, 4th edition

    Google Scholar 

  • Smith JC, Ellenberger H, Ballanyi K, Feldman JL, Richter DW (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254: 726–729

    Article  PubMed  CAS  Google Scholar 

  • Szewczak JM, Jackson DC (1992a) Acid-base state and intermittent breathing in the torpid bat, Eptesicus fuscus. Respir. Physiol. Vol 88: 205–215

    Google Scholar 

  • Szewczak JM, Jackson DC (1992b) Apneic oxygen uptake in the torpid bat, Eptesicus fuscus. J Exp Biol 173: 217–227

    PubMed  CAS  Google Scholar 

  • Tähti H, Soivio A (1975) Blood gas concentrations, acid-base balance and blood pressure in hedgehogs in the active state and in hibernation with periodic respiration. Ann Zool Fenn 12: 188–192

    Google Scholar 

  • Tenney SM, Bartlett D Jr (1967) Comparative quantitative morphology of the mammalian lung: Trachea. Resp Physiol 3: 130–135

    Article  CAS  Google Scholar 

  • Thomas DW, Cloutier D, Gagne DC (1990) Arrhythmic breathing, apnea and non-steady-state oxygen uptake in hibernating little brown bats (Myotis lucifugus). J Exp Biol 149: 395–406

    Google Scholar 

  • West JB, Hugh-Jones P (1961) Pulsatile gas flow in bronchi caused by the heart beat. J Appl Physiol 16(4): 697–702

    PubMed  CAS  Google Scholar 

  • Wilz M (1999) Hibernation, Aestivation und täglicher Torpor beim Siebenschläfer (Glis glis, L.). Ph. D. Thesis, Marburg, Germany

    Google Scholar 

  • Wilz M, Heldmaier G (2000) Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis L. Submitted to J Comp Physiol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilz, M., Milsom, W.K., Heldmaier, G. (2000). Intermittent Ventilation in Hibernating Dormice — Is Ventilation always Necessary to Meet Metabolic Demands?. In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04162-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08682-3

  • Online ISBN: 978-3-662-04162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics