Rate Coefficients for Vibrational Relaxation

  • Mario Capitelli
  • Carlos M. Ferreira
  • Boris F. Gordiets
  • Alexey I. Osipov
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 31)

Abstract

The experimental data on vibrational relaxation, like that on rotational relaxation, can be divided into three categories. The first category includes the characteristic times of vibrational energy relaxation. The second covers the probabilities — or rate coefficients — of the transitions between different levels. The third category includes the differential cross-sections for inelastic collisions leading to vibrational transitions. The probabilities P mn used in kinetic calculations are related to the average of the differential cross-sections over the scattering angles and relative energies of the colliding particles.

Keywords

Combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nikitin E.E. (1974) Theory of Elementary Atomic and Molecular Processes in Gases, Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Lifshitz A. (1974) J. Chem. Phys. 61, 2478ADSCrossRefGoogle Scholar
  3. 3.
    Nikitin E.E., Osipov A.I. and Umansky C.Y. (1994) in Reviews of Plasma Chemistry, ed. B.M. Smirnov, Consultants Bureau, New York London p. 1Google Scholar
  4. 4.
    Audibert M.M., Vilaseca R., Lukasik J. and Ducuing J. (1976) Chem. Phys. Lett. 37, 408ADSCrossRefGoogle Scholar
  5. 5.
    Dove J.L. and Teitelbaum H. (1974) Chem. Phys. 6, 431CrossRefGoogle Scholar
  6. 6.
    Cacciatore M., Capitelli M., and Billing G. D. (1989) Chem. Phys. Lett. 157, 305ADSCrossRefGoogle Scholar
  7. 7.
    Matveev A.A. and Silakov V. P. (1995) Plasma Sources Sci. Technol. 4, 606Google Scholar
  8. 8.
    Flament C., George T., Meister K.A., Tufts J.C., Rich J.W. and Subramanian V.V. (1992) Chem. Phys. 163, 241CrossRefGoogle Scholar
  9. 9.
    G.G. Chorniy and S.A. Losev, eds. Physical-Chemical Processes in Gas Dynamics (1998) Moscow State University, Moscow, Vol. 1 (in Russian) Google Scholar
  10. 10.
    Zuev A.P., Losev S.A., Osipov A.I. and Starik A.M. (1992) Chemical Physics 11, 4 (in Russian) Google Scholar
  11. 11.
    Keck J. and Carrier G. (1965) J. Chem. Phys. 43, 2284MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Billing G. D. (1984) Comp. Phys. Rep. 1, 237ADSCrossRefGoogle Scholar
  13. 13.
    Cacciatore M. (1996) in Molecular Physics and Hypersonic Flows, ed. M. Capitelli, Kluwer, Dordrecht, NATO ASI Series, Vol. 482, p. 21CrossRefGoogle Scholar
  14. 14.
    Andreev E.A. and Nikitin E.E. (1976) in Plasma Chemistry,ed. B.M. Smirnov, Energoizdat, Moscow, Vol. 3, 28 (in Russian) Google Scholar
  15. 15.
    Breschears W.D. and Bird P.F. (1968) J. Chem. Phys. 48, 4768; Eckstrom D.J. (1973) J. Chem. Phys. 59, 2787; McNeal R.J., Whilson M.E. and Cook G.R. (1972) Chem. Phys. Lett. 16, 507ADSGoogle Scholar
  16. 16.
    Zaslonko I.S., Mukoseev Yu.K. and Smirnov V.N. (1982) Chemical Physics No 5, 662 (in Russian) Google Scholar
  17. 17.
    Kozlov P.V., Makarov V.N., Pavlov V.A., Uvarov A.V. and Shatalov O.P. (1996) J. Tech. Phys. 66, 43 (in Russian) Google Scholar
  18. 18.
    Lagana A., Garcia E. and Ciccarelli L. (1987) J. Phys. Chem. 91, 312; Lagana A. and Garcia E. (1996) Quasiclassical and Quantum Rate Coefficients for the N+N2 Reaction, ed. A. Lagana, University of Perugia; Garcia E. and Lagana A. (1998) Plasma Sources Sci. Technol. 7, 359; Lagana A., Crocchianti S., Ochoa de Aspuru G., Riganelli A., and Garcia E. (1997) Plasma Sources Sci. Technol.6, 270Google Scholar
  19. 19.
    Armenise I. Capitelli M., Garcia E., Gorse C., Lagana A., and Longo S. (1992) Chem. Phys. Lett. 200 597Google Scholar
  20. 20.
    Gordiets B.F., Osipov A.I. and Shelepin L.A. (1986) Kinetic Processes in Gases and Molecular Lasers, Gordon and Breach, New York (translated from Russian )Google Scholar
  21. 21.
    Rusanov V.D. and Fridman A A (1984) Physics of Chemically Active Plasma,Nauka, Moscow (in Russian) Google Scholar
  22. 22.
    Gordiets B.F., Pinheiro M., Ferreira C.M. and Ricard A. (1998) Plasma Sources Sci. Technol. 7, 363Google Scholar
  23. 23.
    Walch S.P., Duchovic R.J. and Rohlfild C.M. (1984) Chem. Phys. Lett. 103, 437CrossRefGoogle Scholar
  24. 24.
    Kiefer J.H. and Lutz V.W. (1967) Proceed. 11th Symp. Combustion University of California, Berkeley, p. 67Google Scholar
  25. 25.
    Breen J.E., Quy R.B. and Glass G.D. (1973) J. Chem. Phys. 59, 556ADSCrossRefGoogle Scholar
  26. 26.
    Dushin V.K., Zabelinsky I.E. and Shatalov O.P. (1988) Chemical Physics 7, 1320 (in Russian) Google Scholar
  27. 27.
    Glanzer A. and Troe J. (1975) J. Chem. Phys. 63, 4352ADSCrossRefGoogle Scholar
  28. 28.
    Fernando R.P. and Swith W.M. (1979) Chem. Phys. Lett. 66, 218ADSCrossRefGoogle Scholar
  29. 29.
    Quack M. and Troe J. (1975) Ber. Bunsenges. Phys. Chem. 79, 170CrossRefGoogle Scholar
  30. 30.
    Center R.E. (1973) J. Chem. Phys. 58, 5230ADSCrossRefGoogle Scholar
  31. 31.
    Lewittes M.E., Davis C.C. and McFarlane R.A. (1978) J. Chem. Phys. 69, 1952ADSCrossRefGoogle Scholar
  32. 32.
    Gordiets B.F. and Kulikov Yu.N. (1981) Space Res. 19, 249 (in Russian) Google Scholar
  33. 33.
    Gordiets B.F., Kulikov Yu.N., Markov M.N. and Marov M.Ja. (1982) J. Geophys. Res. A87, 4504Google Scholar
  34. 34.
    Caledonia G.E. and Kennealy J.P. (1982) Planet. Space Sci. 30, 1043ADSCrossRefGoogle Scholar
  35. 35.
    West G.A. and Weston R.E. (1976) Chem. Phys. Lett. 42, 488ADSCrossRefGoogle Scholar
  36. 36.
    Akishev Yu.S., Demianov A.V., Kochetov I.V. at al. (1982) Thermophys. High Temper. 20, 818 (in Russian) Google Scholar
  37. 37.
    Suchkov A.F. and Shebeko Yu.N. (1981) Chem. High Energy 15, 279 (in Russian) Google Scholar
  38. 38.
    Valiansky S.I., Vereschagin K.A., Volkov A.Yu. et al. (1984) Quant. Electron. 11, 1836 (in Russian) Google Scholar
  39. 39.
    Billing G.D. and Fisher E.R. (1979) Chem. Phys. 43, 395ADSCrossRefGoogle Scholar
  40. 40.
    Kirillov A.S. (1997) Space Res. 35, 155 (in Russian) Google Scholar
  41. 41.
    Billing G.D. and Kolesnick R.E. (1992) Chem. Phys. Lett. 200, 382ADSCrossRefGoogle Scholar
  42. 42.
    Cacciatore M. and Billing G.D. (1992) J. Phys. Chem. 96, 217CrossRefGoogle Scholar
  43. 43.
    Kreutz T.G., Gelfand J., Miles R.B. and Rabitz H. (1988) Chem. Phys. 124, 359CrossRefGoogle Scholar
  44. 44.
    Sharma R.D. and Brau C.A. (1969) J. Chem. Phys. 50, 924ADSCrossRefGoogle Scholar
  45. 45.
    Deleon R.L. and Rich J.W. (1986) Chem. Phys. 107, 283CrossRefGoogle Scholar
  46. 46.
    Bott J.F. (1976) J. Chem. Phys. 65, 3921ADSCrossRefGoogle Scholar
  47. 47.
    Guerra V.A. (1998) PhD Thesis, Instituto Superior Tecnico, LisbonGoogle Scholar
  48. 48.
    Cacciatore M. and Billing G.D. (1981) Chem. Phys. 58, 395CrossRefGoogle Scholar
  49. 49.
    Cacciatore M., Billing G.D. and Capitelli M. (1984) Chem. Phys. 89, 17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Mario Capitelli
    • 1
  • Carlos M. Ferreira
    • 2
  • Boris F. Gordiets
    • 3
  • Alexey I. Osipov
    • 4
  1. 1.Department of Chemistry and CRN Research Center for PlasmachemistryUniversity of BariBariItaly
  2. 2.Department of Physics and Centro de Fisica dos PlasmasInstituto Superior TecnicoLisboaPortugal
  3. 3.Optical Department of P.N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Physical DepartmentM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations