Advertisement

“Bioinspired” Metal Complexes of Macrocyclic [N42-] and Open Chain [N2O22-] Schiff Base Ligands — a Link between Porphyrins and Salicylaldimines

  • Ernst-G. Jäger
Conference paper

Abstract

Transition metals play an essential role as active sites of many enzymes. The complex catalytic performance of these biocatalysts should present a continuing challenge to chemists far into the third Millennium. Many attempts have been made in the past decades of the last century to develop new catalysts based on coordination compounds which mimic natural models. Initial success and the first technical applications involved particularly porphyrins and complexes of salicylaldimines. In this paper, we give an overview of chelate complexes of tetradentate Schiff base ligands with either a macrocyclic [N4]2- or an open chain [N2O2]2- donor set derived from aliphatic 3-oxoaldehydes and diamines. These complexes represent a link between those of porphyrin type and those of salicylaldimine type and prove to have many properties and reactions in common with them. The high variability of the complexes’ ligands with regard to the ring size, the extent of the π-electron system, and electronic as well as steric effects of peripheral substituents allow a broad variation of those properties decisive in catalytic performance; such as redox potentials, reactivity of axial coordination sites, and the spin state of the central atom. The redox couples NiII/I as well as the equilibrium constants for the addition of axial ligands to the planar nickel(II) or the penta-coordinated organo-cobalt(III) complexes reflect the high sensitivity of the central atom to electronic effects from equatorial ligands. Some of the macrocyclic nickel complexes are good electrocatalysts for the reduction of carbon dioxide. Most of the discussion focuses on iron complexes, especially their reactivity with different axial ligands, the “push-pull” effects in adducts with mixed axial ligands and some special structural features. First observations of the catalysis of hydroquinone oxidation by an oxidase-like four-electron reduction of dioxygen show that — besides redox potentials, axial reactivity and spin state — the formation of oligonuclear units, stabilized by H-bridges between peripheral oxo-groups and/or axial ligands, seem to play an essential role in catalytic performance. H-bridges are obviously also responsible for the formation of “molecule based magnets” with specific solid-state structures and cooperative magnetic properties.

Keywords

Central Atom Iron Complex SCHIFF Base Ligand Axial Ligand Nickel Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] a)
    Eichhorn, G. L. (Ed.): Inorganic Biochemistry, Volumes 1 and 2, Elsevier, Amsterdam 1973Google Scholar
  2. [1] b)
    Cowan, J. A.: Inorganic Biochemistry — An Introduction, VCH Publishers, New York 1993 Google Scholar
  3. [1] c)
    Lippard, S. J.; Berg, J. M.: Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, Ca., 1994 Google Scholar
  4. [1] d)
    Kaim, W.; Schwederski, B.: Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Chemistry, University Science Books, Mill Valley, Ca., 1994 Google Scholar
  5. [1] D)
    Kaim, W.; Schwederski, B.: Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley & Sons, Chichester, 1994 Google Scholar
  6. [1] E)
    Reedijk, J. (Ed.): Bioinorganic Catalysis, Marcel Dekker, Inc., New York, 1998.Google Scholar
  7. [2] a)
    Haag, E.; Irrgang, E. J.; Boekma, E. J.; Renger, G.: Eur. J. Biochem 1990, 189, 47CrossRefGoogle Scholar
  8. [2] b)
    Debus, R.J.: Biophys. et Biochim. Acta 1992, 1102, 269CrossRefGoogle Scholar
  9. [2] c)
    Pecoraro, V. L. (Ed.): Manganese Redox Enzymes, VCH Publishers, New York, 1992 Google Scholar
  10. [2] d)
    Renger, G.: Photosynth. Res. 1993, 38, 229.CrossRefGoogle Scholar
  11. [3] a)
    Karlin, K. D.; Tyeklar, Z.: Bioinorganic Chemistry of Copper, Chapman & Hall, New York, 1993.CrossRefGoogle Scholar
  12. [3] b)
    Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E.: Chem Rev. 1996, 96, 2563CrossRefGoogle Scholar
  13. [3] c)
    Messerschmidt, A.: Metal Sites in Proteins and Models, 1998, 90, 37–68CrossRefGoogle Scholar
  14. [3] d)
    Abolmaali, B.; Taylor, H. V.; Weser, U.: Structure and Bonding 1998, 91, 91.CrossRefGoogle Scholar
  15. [4] a)
    Sigel, H. (Ed.): Metal Ions in Biological Systems, Vol. 7, Marcel Dekker, Basel, 1978 Google Scholar
  16. [4] b)
    Dunford, H. B. (Ed.): The Biological Chemistry of Iron, D. Reidel Publishing Company, 1982.Google Scholar
  17. [5] a)
    Fischer, H.; Orth, H.: Die Chemie des Pyrrols, Akad. Verlagsgesellschaft, Leipzig, 1934 Google Scholar
  18. [5] b)
    Dolphin, D. (Ed.): The Porphyrins, Vol. I, Academic Press, New York, 1978.Google Scholar
  19. [6] a)
    Dolphin, D.: (Ed.) B 12, Wiley, New York 1982 Google Scholar
  20. [6] b)
    Schneider, Z.; Stroinski, A.: Comprehensive B 12, de Gruyter, Berlin, 1987 CrossRefGoogle Scholar
  21. [6] c)
    Eschenmoser, A.: Angew. Chem. 1988, 100, 6CrossRefGoogle Scholar
  22. [6] d)
    B. T. Golding: Chem. Brit. 1990, 26, 950.Google Scholar
  23. [7]
    Bonacker, L. G.; Baudner, S.; Mörschel, E.; Under, D.; Thauer, R.K.: Eur. J. Biochem. 1993, 217, 587.CrossRefGoogle Scholar
  24. [8] a)
    Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H.: Chem. Rev. 1996, 96, 2841Google Scholar
  25. [8] b)
    Crane, B. R.; Arvai, A.S.; Ghosh, D. K.; Wu, C; Getoff, E. D.; Stuehr, D. J.; Tainer, J. A.: Science 1998, 279, 2121.CrossRefGoogle Scholar
  26. [9]
    Langenbeck, W.: Die organischen Katalysatoren und ihre Beziehungen zu den Fermenten, 2nd edn., Springer-Verlag, Berlin 1949.Google Scholar
  27. [10] a)
    Meunier, B.: Chem Rev. 1992, 92, 1411CrossRefGoogle Scholar
  28. [10] b)
    Sheldon R. (Ed.): Metalloporphyrins in Catalytic Oxidations, Marcel Dekker, New York 1994 Google Scholar
  29. [10] c)
    Montanari, F.; Casella, L. (Eds.): Metalloporphyrins Catalyzed Oxidations, Kluwer Acad. Publ., Dordrecht, 1994 Google Scholar
  30. [10] d)
    Woggon, W.-D.: Topics in Current Chem. 1996, 184, 40Google Scholar
  31. [10] d)
    Song, R.; Bernadou, J.; Meunier, B.: J. Org. Chem. 1997, 62, 673.CrossRefGoogle Scholar
  32. [11]
    Tsumaki, T.: Bull. Chem. Soc. Jpn. 1938, 13, 252.CrossRefGoogle Scholar
  33. [12] a)
    Jacobsen, E. N.: Comprehensive Organometallic Chemistry II (Eds.: Wilkinson, G.; Stone, F. G. A; Abel, E. W.; Hegedus, L. S.), Vol. 12, Chapter 11.1, Pergamon, New York, 1995 Google Scholar
  34. [12] b)
    Katsuki, T.: Coord. Chem. Rev. 1995, 140, 189CrossRefGoogle Scholar
  35. [12] c)
    Younkin, T. R.; Connor, E. F.; Henderson, J. L; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A: Science 2000, 287, 460.CrossRefGoogle Scholar
  36. [13]
    Schrauzer, G. N.: Angew. Chem 1976, 88, 465CrossRefGoogle Scholar
  37. [13a]
    Schrauzer, G. N.: Angew. Chem 1977, 89, 239.CrossRefGoogle Scholar
  38. [14]
    Uhlig, E.; Friedrich, M.: Z. Anorg. Allg. Chem 1966, 343, 299.CrossRefGoogle Scholar
  39. [15]
    Costa, G.: Coord. Chem. Rev. 1972, 8, 63.CrossRefGoogle Scholar
  40. [16]
    Jäger, E.-G.: Z. Chem 1964, 4, 437CrossRefGoogle Scholar
  41. [16a]
    Jäger, E.-G.: Z. Chem 1968, 8, 30, 392, 470CrossRefGoogle Scholar
  42. [16b]
    Jäger, E.-G.: Z. Anorg. Allg. Chem 1969, 364, 177CrossRefGoogle Scholar
  43. [17] a)
    Jäger, E.-G.; Seidel, D.: Z. Chem. 1983, 23, 261CrossRefGoogle Scholar
  44. [17] b)
    Müller, K.; Jäger, E.-G.: Z. Chem. 1985, 25, 377CrossRefGoogle Scholar
  45. [17] c)
    Görls, H.; Reck, G.; Jäger, E.-G.; Müller, K.; Seidel, D.: Cryst. Res. Technol 1990, 25, 1277.CrossRefGoogle Scholar
  46. [18]
    Müller, K.; Jäger, E.-G.: Z. Anorg. Allg. Chem 1989, 577, 195CrossRefGoogle Scholar
  47. [18a]
    Schade, W.; Jäger, E.- G.; Müller, K.; Seidel, D.: J. Prakt. Chem 1989, 331, 559.CrossRefGoogle Scholar
  48. [19] a)
    Jäger, E.-G.; Stein, E.; Gräfe, F.; Schade, W.: Z. Anorg. Allg. Chem 1985, 526, 15;CrossRefGoogle Scholar
  49. [19] b)
    Jäger, E.-G.; Gräfe, F.: ibid. 1988, 561, 25Google Scholar
  50. [19] c)
    Jäger, E.-G.; Hähnel, H.; Klein, H.-F.; Schmidt, A.: J. Prakt. Chem 1991, 333, 423.CrossRefGoogle Scholar
  51. [20] a)
    Jäger, E.-G.; Keutel, H.; Rudolph, M.; Krebs, B.; Wiesemann, F.: Chem. Ber. 1995, 128, 503CrossRefGoogle Scholar
  52. [20] b)
    Jäger, E.-G.; Keutel, H.: Inorg. Chem 1997, 36, 3512CrossRefGoogle Scholar
  53. [20] c)
    Käpplinger, I.; Keutel, H.; Jäger, E.-G.: Inorg. Chim Acta 1999, 291, 190.CrossRefGoogle Scholar
  54. [21]
    Jäger, E-G.: Z. Anorg. Allg. Chem. 1965, 337, 80CrossRefGoogle Scholar
  55. [21a]
    Jäger, E-G.: Z. Anorg. Allg. Chem. 1967, 349, 139CrossRefGoogle Scholar
  56. [21b]
    Jäger, E-G.: Z. Anorg. Allg. Chem. 1968, 359, 147CrossRefGoogle Scholar
  57. [21c]
    Wolf, L.; Jäger, E.-G.: Z. Chem. 1965, 5, 392CrossRefGoogle Scholar
  58. [21d]
    Wolf, L.; Jäger, E.-G.: Z. Anorg. Allg. Chem. 1966, 346, 76.CrossRefGoogle Scholar
  59. [22a]
    Jäger, E.-G.; Renner, P.; Schmidt, R.: a) Z. Chem. 1977, 17, 189CrossRefGoogle Scholar
  60. [22b]
    Jäger, E.-G.; Renner, P.; Schmidt, R.: b) ibid. 1977, 17, 307Google Scholar
  61. [22c]
    Renner, P.: PhD-Thesis, University of Jena, 1977 Google Scholar
  62. [22d]
    Jäger, E.-G.; Müller, R.; Renner, P.: Z. Chem 1982, 22, 65.CrossRefGoogle Scholar
  63. [23] a)
    Jäger, E.-G.; Kirchhof, B.; Schmidt, E.; Remde, B.; Kipke A.; Müller, R.: Z. Anorg. Allg. Chem. 1982, 485, 141CrossRefGoogle Scholar
  64. [23] b)
    Jäger, E.-G.; Schienvoigt, G.; Kirchhof, B.; Rudolph, M.; Müller, R.: ibid. 1982, 485, 173Google Scholar
  65. [23] c)
    Jäger, E.-G.; Rudolph, M.; Müller, R.: Z. Chem 1978, 18, 229.CrossRefGoogle Scholar
  66. [24] a)
    Jäger, E.-G.; Häussier, E.; Rudolph, M.; Schneider, A: Z. Anorg. Allg. Chem. 1985, 525, 67CrossRefGoogle Scholar
  67. [24] b)
    Görls, H.; Jäger, E.-G.: Cryst. Res. Technol 1991, 26, 349.CrossRefGoogle Scholar
  68. [25] a)
    Jäger, E.-G.; Schuhmann, K.; Görls, H.: a) Inorg. Chim Acta 1997, 255, 295CrossRefGoogle Scholar
  69. [25] b)
    Jäger, E.-G.; Schuhmann, K.; Görls, H.: Chem. Ber./Recueil 1997, 130, 1643CrossRefGoogle Scholar
  70. [25] c)
    Schuhmann, K.; Jäger, E.-G.: Eur. J. Inorg. Chem 1998, 2051Google Scholar
  71. [25] d)
    Schuhmann, K.: PhD thesis, University of Jena, 1998. Google Scholar
  72. [26]
    Cotton, F.A.; Czuchajowska, J.: Polyhedron 1990, 9, 2553.Google Scholar
  73. [27]
    Mountford, P.: Chem Soc. Rev. 1998, 27, 105.CrossRefGoogle Scholar
  74. [28]
    Weiss, M. C; Gordon, G.; Goedken, V.L.: Inorg. Chem. 1977, 16, 305.CrossRefGoogle Scholar
  75. [29]
    Hanic, F.; Handlovic, M.; Lindgren, O.: Collect. Czech. Chem Commun. 1972, 37, 2119.CrossRefGoogle Scholar
  76. [30] a)
    Wang, Y.; Peng, S.-M.; Lee, Y.-L.; Chuang, M.-C.; Tang, C.-P.; Wang, C.-J.: J. Chin. Chem. 1982, 29, 217Google Scholar
  77. [30] b)
    Weiss, M. C; Goedken, V. L.: Inorg. Chem 1979, 18, 819.CrossRefGoogle Scholar
  78. [31]
    Schneider, A. PhD thesis, University of Jena, 1991.Google Scholar
  79. [32] a)
    Knaudt, J. PhD thesis, University of Jena, 1998 Google Scholar
  80. [32] b)
    Knaudt, J.; hnhof, W.; Sternberg, U.; Jäger, E.-G.: To be published.Google Scholar
  81. [33]
    Jäger, E.-G.; Knaudt, J.; Rudolph, M.; Rost, M. Chem. Ber. 1996, 129, 1041.CrossRefGoogle Scholar
  82. [34]
    Jäger, E.-G.; Knaudt, J.; Schuhmann, K; Guba, A.: In Peroxide ChemistryFinal Report of the DFG Priority Program, Adam, W. (Ed.), Chapter C.4., Wiley-VCH, Weinheim 2000, in press.Google Scholar
  83. [35]
    Jäger, E.-G.; Rudolph, M.: Schneider, A.; Gräfe, F.: Z. Chem. 1985, 25, 445.CrossRefGoogle Scholar
  84. [36]
    Knaudt, J.; Förster, St.; Bartsch, U.; Rieker, A.; Jäger, E-G.: Z Naturforsch. 2000, 55b, in press.Google Scholar
  85. [37] a)
    Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C. M.; Ejeh, D.; Hambright, P.; Fujita, E.: J. Phys. Chem 1998, 102, 2870CrossRefGoogle Scholar
  86. [37] b)
    Sutin, N.; Creutz, C; Fujita, E.: Comments Inorg. Chem. 1997, 19, 67CrossRefGoogle Scholar
  87. [37] c)
    Bhugun, I.; Lexa, D.; Saveant, J.-M.: J. Am Chem. Soc. 1996, 118, 1769CrossRefGoogle Scholar
  88. [37] d)
    Nallas, G. N. A.; Brewer, K.: Inorg. Chim Acta 1996, 255, 7CrossRefGoogle Scholar
  89. [37] e)
    Hawecker, J.; Ixhn, J.-M.; Ziessel, R.: Chem Commun. 1984, 328.Google Scholar
  90. [38]
    Ali, M. M.; Sato, H.; Mizukawa, T.; Tsuge, K.; Haga, M.; Tanaka, K.: Chem Commun. 1998, 249.Google Scholar
  91. [39]
    Gennaro, A.; Isse, A. A. Saveant, J.-M.; Severin, M.-G; Vianello, E.: J. Am Chem Soc. 1996, 118, 7190.CrossRefGoogle Scholar
  92. [40]
    Rudolph, M.; Dautz, S.; Jäger, E.-G.: submitted.Google Scholar
  93. [41]
    Rudolph, M.; Feldberg, S. W.: DigiSim® 2.0 Software, Bioanalytical Systems Inc., West Lafayette, IN 47906, USA, 1995.Google Scholar
  94. [42] a)
    Rudolph, M.; Jäger, E.-G.: Z. Chem 1989, 29, 418CrossRefGoogle Scholar
  95. [42] b)
    Jäger, E.-G.; Rudolph M.: J. Electroanal. Chem. 1997, 434, 1.CrossRefGoogle Scholar
  96. [43] a)
    Rudolph, M.: PhD-Thesis, University of Jena, 1982 Google Scholar
  97. [43] b)
    Jäger, E.-G.; Rudolph, M: Z. Chem. 1981, 21, 371.CrossRefGoogle Scholar
  98. [44]
    Streeky, J. A.; Pillsbury, D. G.; Busch, D. H.: Inorg. Chem 1980, 19, 3148.CrossRefGoogle Scholar
  99. [45]
    Jäger, E.-G.; Renner, P.: Z. Chem 1978, 18, 193.CrossRefGoogle Scholar
  100. [46]
    Seidel, D.: PhD-Thesis, University of Jena, 1985.Google Scholar
  101. [47]
    Wiesemann, F.; Krebs, B.; Görls, H.; Jäger, E.-G.: Z. Anorg. Allg. Chem. 1995, 621, 1883.CrossRefGoogle Scholar
  102. [48] a)
    Saalfrank, R. W.; Struck, O.; Toupet, L.; v. Schnering, H.-G.: Chem Ber. 1993, 126, 837CrossRefGoogle Scholar
  103. [48] b)
    Saalfrank, R. W.; Struck, O.; Danion, D.; Hassa, J.; Roupet, L.: Chem. Mater. 1994, 6, 1432.CrossRefGoogle Scholar
  104. [49]
    Krebs, B.: University of Münster, private communication.Google Scholar
  105. [50]
    Jäger, E.-G.; Barth, St.; Keutel, H. In Bioinorganic Chemistry: Transition Metals in Biology and their Coordination Chemistry, Trautwein, A. X. (Ed.), WILEY-VCH, Weinheim, 1997, 584.Google Scholar
  106. [51] a)
    Keutel, H.; Käpplinger, L; Jäger, E.-G.; Grodzicki, M.; Schùnemann, V.; Trautwein, A. X.: Inorg. Chem. 1999, 38, 2320CrossRefGoogle Scholar
  107. [51] b)
    Käpplinger, L; Grodzicki, M.; Schünemann, V.; Görls, H.; Trautwein, A. X.; Jäger, E.-G.: Inorg. Chem. submitted.Google Scholar
  108. [52]
    Gadsby, P. M. A.; Thomson, A.: J. Am Chem. Soc. 1990, 112, 5003.CrossRefGoogle Scholar
  109. [53]
    Jäger, E.-G.; Leibeling, G.; Friedrich, M.: unpublished results.Google Scholar
  110. [54]
    Käpplinger, L; Görls, H.; Jäger, E.-G.: Manuscript in preparation. Google Scholar
  111. [55]
    Jäger, E.-G.; Schweder, B.; Radzuweit, Z. Chem 1988, 28, 152.CrossRefGoogle Scholar
  112. [56]
    Jäger, E.-G.: Z. Chem 1985, 25, 446.CrossRefGoogle Scholar
  113. [57]
    Jäger, E.-G.; Liehr, J.; Morich, E.; Dix, A.: Proc. 12 th Conf. Coord. Chem Smolenice/Bratislava, 1989, 123.Google Scholar
  114. [58]
    Einsle, O.; Messerschmidt, A.; Stach, P.; Bourenkov, G. P.; Bartunik, H. D.; Huber, R.; P. M. H. Kroneck: Nature 1999, 400, 474.CrossRefGoogle Scholar
  115. [59]
    Wiesemann, F.; Wonnemann, R.; Krebs, B.; Keutel, H.; Jäger, E.-G.: Angew. Chem Int. Ed. Engl. 1994, 33, 1363.CrossRefGoogle Scholar
  116. [60]
    Weber, B.; Jäger, E.-G.: to be published. Google Scholar
  117. [61]
    Leibeling, G.; Görls, H.; Jäger, E.-G.: manuscript in preparation. Google Scholar
  118. [62]
    Liu, H. Y.; Scharbet, B.; Holm, R.H.: J. Am. Chem. Soc. 1991, 113, 9529.CrossRefGoogle Scholar
  119. [63] a)
    Kennedy, B. I; McGrath, A. C.; Murray, K. S. Skelton, B. W.; Whrite, A. H.: Inorg. Chem. 1987, 26, 483CrossRefGoogle Scholar
  120. [63] b)
    Nishida, Y.; Kino, K.; Kida, S.: J. Chem Soc. Dalton Trans. 1987, 1157.Google Scholar
  121. [64]
    Leibeling, G.; Görls, H.; Müller, B.; Jäger, E.-G.: Submitted.Google Scholar
  122. [65]
    Müller, B.; Leibeling, G.; Jäger, E.-G.: Mol Cryst. and Liq. Cryst. 1999, 334, 389.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ernst-G. Jäger
    • 1
  1. 1.Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaGermany

Personalised recommendations