Skip to main content

Methane Sinks, Distribution, and Trends

  • Chapter

Abstract

At present the amount of methane removed from the atmosphere each year is about 500 Tg/yr or more than 90% of that released into the atmosphere each year. Most of the methane is removed by reacting with tropospheric OH radicals; lesser amounts are removed by soils and stratospheric oxidation by OH, O(1D), and minor reactions. This chapter is on the removal rate of CH4 and its variability in space and time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett, K. B., R. C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26: 261–320.

    Article  Google Scholar 

  • Brasseur, G., M. H. Hitchman, S. Walters, M. Dymek, E. Falise, M. Pirre. 1990. An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere. J. Geophys. Res., 95 (D5): 5639–5655.

    Article  Google Scholar 

  • Bush, Y. A., A. L. Schmeltekopf, F. C. Fehsenfeld, D. L. Albritton, J. R. McAfee, P. D. Goldan, E. E. Ferguson. 1978. Stratospheric measurements of methane at several latitudes. Geophys. Res. Leu., 5: 1027–1029.

    Article  Google Scholar 

  • Crutzen, P. J., U. Schmailzl. 1983. Chemical budgets of the stratosphere. Planet. Space Sci., 31 (9): 1009–1032.

    Article  Google Scholar 

  • DeMore, W. B., S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C.E. Kolb, R. F. Hampson, M.J. Kurylo, M.J. Molina. 1992. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. NASA Evaluation No. 10.

    Google Scholar 

  • Dlugokencky, E.J., L.P. Steele, P.M. Lang, K.A. Masarie. 1994. The growth rate and distribution of atmospheric methane. J. Geophys. Res., 99, 17021–17043.

    Article  Google Scholar 

  • Ehhalt, D. H., L. E. Heidt, E. A. Martell. 1972. The concentrations of atmospheric methane between 44 and 62 kilometers altitude. J. Geophys. Res., 77: 2193–2196.

    Article  Google Scholar 

  • Fabian, P., R. Borchers, G. Flentje, W.A. Matthews, W. Seiler, H. Giehl, K. Bunse, F. Müller, U. Schmidt, A. Volz, A. Khedim, F.J. Johnen. 1981. The vertical distribution of stable trace gases at mid-latitudes. J. Geophys. Res., 86 (C6): 5179–5184.

    Article  Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96 (D7): 13033–13065.

    Article  Google Scholar 

  • Gunson, M. R., C.B. Farmer, R. H. Norton, R. Zander, C. P. Rinsland, J. H. Shaw, B.-C. Gao. 1990. Measurements of CH„ N2O, CO, H2OO, and O3 in the middle atmosphere by the Atmospheric Trace Molecule Spectroscopy Experiment on Spacelab 3. J. Geophys. Res., 95 (D9): 13867–13882.

    Article  Google Scholar 

  • Hahn, C.J., S.G. Warren, J. London, R. L. Jenne, R. M. Chervin. 1987. Climatological Data for Clouds over the Globe from Surface Observations. Report NDP-026, Carbon Dioxide Information Center, Oak Ridge, TN.

    Google Scholar 

  • Houweling, S., F. Dentener, Jos Lelieveld. 1998. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res., 108 (D9), 10673–10696.

    Article  Google Scholar 

  • Jones, R. L., J. A. Pyle. 1984. Observations of CH, and N2O by the NIMBUS 7 SAMS: a comparison with in situ data and two-dimensional numerical model calculations. J. Geophys. Res., 89 (D4): 5263–5279.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88 (C9): 5131–5144.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen. 1985. Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19: 397–407.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen. 1990. Atmospheric methane: recent global trends. Environ. Sci. Technol., 24: 549–553.

    Article  Google Scholar 

  • Khalil, M. A. K., R.A. Rasmussen. 1992. Forest hydrocarbon emissions: relationships between fluxes and ambient concentrations. J. Air Waste Manage. Assoc., 42: 810–813.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen. 1993. Decreasing trend of methane: unpredictability of future concentrations. Chemosphere, 26: 803–814.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen, F. P. Moraes. 1993. Atmospheric methane at Cape Meares: Analysis of a high resolution data base and its environmental implications. J. Geophys. Res., 98, 14753–14770.

    Article  Google Scholar 

  • Krol, M. P. J. van Leeuwen, Jos Lelieveld. 1998. Global OH trend inferred from methylchloroform measurements. J. Geophys. Res., 103 (D9), 10697–10711.

    Article  Google Scholar 

  • Lelieveld, J., P. J. Crutzen, C. Brühl. 1993. Climate effects of atmospheric methane. Chemosphere, 26: 739–768.

    Article  Google Scholar 

  • Levine, J. S., C. P. Rinsland, G. M. Tennille. 1985. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature, 318: 254–257.

    Article  Google Scholar 

  • Lu, Y. 1993. Model calculations of radiative transfer and tropospheric chemistry. Ph.D. dissertation, Oregon Graduate Institute, Beaverton, OR.

    Google Scholar 

  • Lu, Y., M. A. K. Khalil. 1991. Tropospheric OH: model calculations of spatial, temporal, and secular variations. Chemosphere, 23: 397–444.

    Article  Google Scholar 

  • Lu, Y., M. A. K. Khalil. 1992. Model calculation of night-time atmospheric OH. Tellus, 44B: 106–113.

    Article  Google Scholar 

  • Madronich, S., C. Granier. 1992. Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals and methane trends. Geophys. Res. Lett., 19: 465–467.

    Article  Google Scholar 

  • Matthews, E. 1983. Global vegetation and land use: new high-resolution data bases for climate studies. J. Climate Appl. Met., 22: 474–487.

    Article  Google Scholar 

  • Matthews, E. 1984. Vegetation, land-use and seasonal albedo data sets: documentation of archived data tape. NASA Technical Memorandum 86107, Goddard Space Flight Center, New York, U.S.A.

    Google Scholar 

  • Ojima, D. S., D. W. Valentine, A. R. Mosier, W. J. Parton, D. S. Schimel. 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26 (1–4): 675–685.

    Article  Google Scholar 

  • Pinto, J., M. A. K. Khalil. 1991. The stability of tropospheric OH during ice ages, interglacial epochs and modern times. Tellus, 43B: 347–352.

    Article  Google Scholar 

  • Prather, M., C. M. Spivakovsky. 1990. Tropospheric OH and the lifetimes of hydrochlorofluorocarbons. J. Geophys. Res., 95 (D11): 18723–18729.

    Article  Google Scholar 

  • Rasmussen, R. A., M. A. K. Khalil. 1986. Atmospheric trace gases: trends and distributions over the last decade. Science, 232: 1623–1624.

    Article  Google Scholar 

  • Schmidt, U., A. Khedim, D. Knapsa, G. Kulessa, F. J. Johnen. 1984. Stratospheric trace gas distributions observed in different seasons. Adv. Space Res., 4 (4): 131–134.

    Article  Google Scholar 

  • Schmidt, U., G. Kulessa, E. Klein, E.-P. Roth, P. Fabian, and R. Borchers. 1987. Intercomparison of balloon-borne cryogenic whole air samplers during the MAP/GLOBUS 1983 campaign. Planet. Space Sci., 35: 647–656.

    Article  Google Scholar 

  • Spivakovsky, C. M., R. Yevich, J. A. Logan, S. C. Wofsy, M. B. McElroy, M. J. Prather. 1990. Tropospheric OH in a three-dimensional chemical tracer model: an assessment based on observations of CH3CC13. J. Geophys. Res., 95 (Dl 1): 18441–18471.

    Article  Google Scholar 

  • Steele, L. P., P. J. Fraser, R. A. Rasmussen, M. A. K. Khalil, T. J. Conway, A. J. Crawford, R. H. Gammon, K. A. Masarie, K. W. Thoning. 1987. The global distribution of methane in the troposphere. J. Atmos. Chem., 5: 125–171.

    Article  Google Scholar 

  • Steudler, P. A., R. D. Bowden, J. M. Melilo, J. D. Aber. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 341: 314–316.

    Article  Google Scholar 

  • Taylor, F. W. A. Dudhia, C. D. Rodgers. 1989. Proposed reference models for nitrous oxide and methane in the middle atmosphere. In: Handbook for MAP, Vol. 31. (G.M. Keating, ed.), 67–79.

    Google Scholar 

  • Thompson, A. M., R. J. Cicerone. 1986. Possible perturbations to atmospheric CO, CH4i and OH. J. Geophys. Res., 91 (D10): 10853–10864.

    Article  Google Scholar 

  • Thompson, A. M. 1992. The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science, 256: 1157–1165.

    Article  Google Scholar 

  • Vaghjiani, G. L., A. R. Ravishankara. 1991. New measurement of the rate coefficient for the reaction of OH with methane. Nature, 350: 406–408.

    Article  Google Scholar 

  • Warneck, P. 1988. Chemistry of the Natural Atmosphere. Vol. 41, International Geophysics Series, Academic Press, Inc., San Diego, CA, USA.

    Book  Google Scholar 

  • Weisenstein, D. K., M. K. W. Ko, N.-D. Sze. 1992. The chlorine budget of the present-day atmosphere: a modeling study. J. Geophys. Res., 97 (D2): 2547–2559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khalil, M.A.K., Shearer, M.J., Rasmussen, R.A. (2000). Methane Sinks, Distribution, and Trends. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics