Skip to main content

Can Stable Isotopes and Global Budgets Be Used to Constrain Atmospheric Methane Budgets?

  • Chapter
Atmospheric Methane

Abstract

Global climate change associated with the increasing atmospheric methane burden is an important societal concern. Today we can monitor with good precision the yearly 1% rise in lower tropospheric methane mixing ratios (e.g., Blake and Rowland, 1988), and we have adequate, basic global coverage of atmospheric methane latitudinal variation. Mesoscopically, we are able to roughly estimate the various source strengths, e.g., from wetlands, agriculture, fossil fuels, but there is considerable uncertainty in the actual magnitudes of the various individual fluxes of methane across the geosphere-biosphere-atmosphere interface. This knowledge deficit includes our understanding of both release and uptake process-groups. Control of methane emissions to the atmosphere requires that we reliably characterize these source-sink relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrajano, T.A., N.R. Sturchio, J.H. Bohlke, G.L. Lyon, R.J. Poreda, C.M. Stevens. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem. Geol., 71: 211–222.

    Google Scholar 

  • Alperin, M.J., W.S. Reeburgh, M.J. Whiticar. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem. Cycles, 2: 279–288.

    Article  Google Scholar 

  • Blake, D.R., F.S. Rowland. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239:1,129–1,131.

    Google Scholar 

  • Boone, D.R. 1993. Biological Formation and Consumption of Methane. In: Atmospheric Methane: Sources, Sinks, and Role in Global Change, edited by M.A.K. Khalil, Springer-Verlag, 102–127.

    Chapter  Google Scholar 

  • Cantrell, C.A., R.E. Shetter, A.H. McDaniel, J.G. Calvert, J.A. Davidson, D.C. Lowe, S.C. Tyler, R.J. Cicerone, J.P. Greenberg. 1990. Carbon kinetic isotope effect in the oxidation of methane by hydroxyl radicals. J Geophys. Res., 95:22, 455–22, 462.

    Google Scholar 

  • Chung, H.M., W.M. Sackett. 1979. Use of stable isotope compositions of pyrolytically derived methane as a maturity indices for carbonaceous materials. Geochim. Cosmochim. Acta., 43:1, 979–1, 988.

    Google Scholar 

  • Chung, H.M., J.R. Gromly, R.M. Squires. 1988. Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution. Chem. Geol., 71: 97–103.

    Article  Google Scholar 

  • Claypool, G.E., I.R. Kaplan. 1974. The origin and distribution of methane in marine sediments. In: Natural Gases in Marine Sediments ( I.R. Kaplan, ed.), Plenum, New York, pp. 99–139.

    Chapter  Google Scholar 

  • Clayton, C. 1991. Carbon isotope fractionation during natural gas generation from kerogen. Mar. and Petrol. Geol., 8: 232–240.

    Article  Google Scholar 

  • Colombo, U., F. Gazzarini, G. Sironi, R. Gonfiantini, E. Tongiorni. 1965. Carbon isotope composition of individual hydrocarbons from Italian natural gases. Nature, 205:1,3031,304.

    Google Scholar 

  • Davidson, J.A., C.A. Cantrell, S.C. Tyler, J.G. Calvert, R.J. Cicerone, R.E. Shetter. 1986. The carbon kinetic isotope effect in the CH4 + OH reaction. EOS, 67: 245.

    Google Scholar 

  • Davidson, J.A., C.A. Cantrell, S.C. Tyler, R.E. Shetter, R.J. Cicerone, J.G. Calvert. 1987. Carbon kinetic isotope effect in the reaction of CH4 with HO. J. Geophy. Res., 92: 2, 1952, 199.

    Google Scholar 

  • Evans, C.R., F.L. Staplin. 1971. Regional facies of organic metamorphism in geochemical exploration. In: 3rd Intl. Geochem. Explor. Symp., Proc. Can. Inst. Mining and Metallurgy, Spec. Vol., 11:517–520.

    Google Scholar 

  • Faber, E., M.J. Whiticar. 1989. C- and -Isotope in leichtfluchtige Kohlenwasserstoffen der KTB. KTB Reports.

    Google Scholar 

  • Faber, E., P. Gerling, I. Dumke. 1987. Gaseous hydrocarbons of unknown origin found while drilling. Org . Geochem., 13: 875–879.

    Google Scholar 

  • Frank, D.J. 1972. Deuterium variations in the Gulf of Mexico and selected organic materials. Ph.D. thesis, Texas A&M Univ.

    Google Scholar 

  • Galimov, E.M. 1973. Carbon Isotopes in Oil and Gas Geology Nauka, Moscow, Engl. trans: NASA TT-682, Washington, D.C. 1975, 395 p.

    Google Scholar 

  • Galimov, E.M. 1985. The Biological Fractionation of Isotopes, Academic Press, N.Y., 261 p.

    Google Scholar 

  • Galimov, E.M., I.A. Petersil’ye. 1967. Isotopic composition of the carbon of methane isolated in the pores and cavities of some igneous minerals. Doklady AN SSSR 176 (4).

    Google Scholar 

  • Galimov, E.M., A.A. Ivlev. 1973. Thermodynamic isotope effects in organic compounds: 1.

    Google Scholar 

  • Carbon isotope effects in straight-chained alkanes. Russian J. Phys. Chem. 47:1564–1566.

    Google Scholar 

  • Gerling, P. 1985. Isotopengeochemische Oberflächenprospektion Onshore. BGR Internal Report No. 98576, 36 pp.

    Google Scholar 

  • Gordon, S., W.A. Mulac. 1975. Reaction of the OH (X2n) radical produced by the pulse radiolysis of water vapour. Int. J. Chem. Kinetics:289–299, Proc. Symp. on Chemical Kinetics Data for the Upper and Lower Atmosphere.

    Google Scholar 

  • Hunt, J.M., A.Y. Huc, J.K. Whelan. 1980. Generation of light hydrocarbons in sedimentary rocks. Nature, 288: 688–690.

    Article  Google Scholar 

  • James, A.T. 1983. Correlation of natural gas by use of carbon isotope distribution between 84 Whiticar hydrocarbon components. Am. Assoc. Petrol. Geol., 67:1, 176–1, 191.

    Google Scholar 

  • Jefferey, A.W.A., I.R. Kaplan. 1988. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden. Chem. Geol., 71: 237–255.

    Article  Google Scholar 

  • Karweil, J. 1969. Aktuelle Probleme der Geochemie der Kohle. In: Advances in Organic Geochemistry 1968 ( P.A. Schenk and I. Havenaar, eds.), Pergamon Press, Oxford, pp. 5984.

    Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, J.R.J. French, J.A. Holt. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHCI„ N20, CO, H2, and light hydrocarbons. J. Geophys. Res., 95:3, 619–3, 634.

    Google Scholar 

  • Konnerup-Madsen, J., R. Kreulen, U. Rose-Hansen. 1988. Stable isotope characteristics of hydrocarbon gases in the alkaline Ilimaussaq complex, south Greenland. Bull. Minéral., 111: 567–576.

    Google Scholar 

  • Kvenvolden, K.A. 1988. Methane hydrate - A major reservoir of carbon in the shallow geosphere. Chem. Geol., 71:41–51.

    Google Scholar 

  • Laier, T. 1988. Hydrocarbon gases in the crystalline rocks of the Gravberg-1 well, Swedish deep gas project. Mar. and Petrol. Geol., 5: 370–377.

    Article  Google Scholar 

  • Lasaga, T., G.V. Gibbs. 1991. Ab initio studies of the kinetic isotope effect of the CH4 + OH• atmospheric reaction. Geophys. Res. Lett., 18:1, 217–1, 220.

    Google Scholar 

  • Lyon, G.L., J.R. Hulston. 1984. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochim. et Cosmochim. Acta, 48:1, 161–1, 171.

    Google Scholar 

  • McCarty, H.B., G.T. Felbeck, Jr. 1986. High temperature simulation of petroleum formation, IV. Stable carbon isotope studies of gaseous hydrocarbons. Org . Geochem., 9:183–192.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1983. Global production of methane by termites. Nature, 301: 704–705.

    Article  Google Scholar 

  • Rice, D.D. 1993. Controls, habitat, and resource potential of ancient bacterial gas. In: Biogenic Natural Gas (in press).

    Google Scholar 

  • Rice, D.D., G.E. Claypool. 1981. Generation, accumulation and resource potential of biogenic gas. AAPG Bull., 67:1, 199–1, 218.

    Google Scholar 

  • Rust, F.E., C.M. Stevens. 1980. Carbon kinetic isotopic effect in the oxidation of methane by hydroxyl. Int. J. Chem. Kinetics, 12: 371–377.

    Article  Google Scholar 

  • Sackett W.M. 1968. Carbon isotope composition of natural methane occurrences. AAPG Bull., 52: 853–857.

    Google Scholar 

  • Schmidt, M. 1987. Isotope-geochemical analysis of dunk tank gases, headspace gases, desorbed gases of cuttings and cores. Vattenfall Deep Gas Project, Init. Rpt., Nov. 1987, 14 p.

    Google Scholar 

  • Schoell, M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. et Cosmochim. Acta, 44: 649–661.

    Google Scholar 

  • Schoell, M. (ed.) 1988. Origins of Methane in the Earth. Chem. Geol., 71, 265 p.

    Google Scholar 

  • Seiler, W., R. Conrad, D. Scharffe. 1984. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J. Atmos. Chem., 1: 171–186.

    Article  Google Scholar 

  • Sherwood, B., P. Fritz, S.K. Frape, S.A. Macko, S.M. Weise, J.A. Welhan. 1988. Methane occurrences in the Canadian Shield. Chem. Geol., 71: 223–236.

    Article  Google Scholar 

  • Silverman, S.R. 1971. Influence of petroleum origin and transformation on its distribution and redistribution in sedimentary rocks. Proc., 8th World Petrol. Congr. 2, 47–54.

    Google Scholar 

  • Simoneit, B.R.T., O.E. Kawka, M. Brault. 1988. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol., 71: 169–182.

    Article  Google Scholar 

  • Stahl, W. 1973. Carbon isotope ratios of German natural gases in comparison with isotopic data of gaseous hydrocarbons from other parts of the world. In: Advances in Organic Geochemistry 1973 ( B. Tissot and F. Bienner, eds.), Pergamon Press, Oxford, pp. 453–462.

    Google Scholar 

  • Stevens, C.M. 1993. Isotopic abundances in the atmosphere and sources. In: Atmospheric Methane: Sources, Sinks, and Role in Global Change, edited by M.A.K. Khalil, Springer-Verlag, 62–88.

    Chapter  Google Scholar 

  • Tissot, B.P., D.H. Welte. 1978. Petroleum Formation and Occurrence. Springer Verlag, Berlin, 538 p.

    Chapter  Google Scholar 

  • Welhan, J.A. 1988. Origins of methane in hydrothermal systems. Chem. Geol., 71: 183–198.

    Article  Google Scholar 

  • Welhan, J.A., J.E. Lupton. 1987. Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: Thermogenic versus abiogenic origin. Bull. Am. Assoc. Petrol. Geol., 71: 215–223.

    Google Scholar 

  • Whelan, J.K., M.E. Tarafa, J.M. Hunt. 1982. Volatile C1-CB organic compounds in macroalgae. Nature, 299: 50–52.

    Article  Google Scholar 

  • Whiticar, M.J. 1990. A geochemical perspective of natural gas and atmospheric methane. In: Advances in Organic Geochemistry (B. Durand and F. Behar, eds.), Org. Geochem. 16, 531–547.

    Google Scholar 

  • Whiticar, M.J. 1992. Isotope tracking of microbial methane formation and oxidation. In: Cycling of Reduced Gases in the Hydrosphere (D.D. Adams, P.M. Crill, and S.P. Seitzinger, eds.), Mitteilung (Communications) v. 23, Internationalen Vereinigung für Theoretische and Angewandte Limnlogie, E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, Germany

    Google Scholar 

  • Whiticar, M.J., E. Faber. 1986. Methane oxidation in sediment and water column environments–isotope evidence. Org . Geochem., 10: 759–768.

    Google Scholar 

  • Whiticar, M.J., E. Suess. 1989. Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. In: Geochemistry of Hydrothermal Systems, Applied Geochemistry, 5 (B.R.T. Simoneit, ed.), 135–147.

    Google Scholar 

  • Whiticar, M.J., B.R.T. Simoneit. 1993. Carbon and hydrogen isotope systematics of hydrothermal hydrocarbons at Yellowstone Park, USA. (in press)

    Google Scholar 

  • Whiticar, M.J., E. Faber, M. Schoell. 1984. Carbon and hydrogen isotopes of C1–05 hydrocarbons in natural gases. AAPG Research Conference on Natural Gases, San Antonio TX.

    Google Scholar 

  • Whiticar, M.J., E. Faber, M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO, reduction vs. acetate fermentation–isotope evidence. Geochim. et Cosmochim. Acta, 50: 693–709.

    Google Scholar 

  • Zehnder, A.J.B. (ed.) 1988. Biology of Anaerobic Microorganisms. Wiley, N.Y.

    Google Scholar 

  • Zimmerman, P.R., J.P. Greenberg, S.O. Wandiga, P.J. Crutzen. 1982. Termites: A potentially large source of atmospheric methane, carbon dioxide and molecular hydrogen. Science, 2 /8: 563–565.

    Article  Google Scholar 

  • Zimmerman, P.R., C. Westberg, J. Darlington. 1987. Global methane production by termites. Div. of Geochem., 193rd National Mtg., Am. Chem. Soc. (abstract), p. 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whiticar, M.J. (2000). Can Stable Isotopes and Global Budgets Be Used to Constrain Atmospheric Methane Budgets?. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics