Skip to main content

Biological Formation and Consumption of Methane

  • Chapter
Atmospheric Methane

Abstract

Methane is an important product formed during the bacterial degradation of organic matter in environments such as flooded soils, wetlands, estuaries, marine and freshwater sediments, and the gastrointestinal tract of animals (Whitman et al., 1992). This chapter describes the conditions that lead to biogenic methane formation in natural environments, the metabolic pathways and interactions that lead to methanogenesis, and the implications of these factors on the biogeochemistry of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeckersberg, F., F. Bak, F. Widdel. 1991. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol., 156: 5–14.

    Article  Google Scholar 

  • Bak, F., K. Finster. 1993. Formation of dimethyl sulfide and methane thiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. In: R.S. Oremland (ed.) Biogeochemistry of Global Change: Radiatively Active Trace Gases, p. 782–795. Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Baresi, L. 1984. Methanogenic cleavage of acetate by lysates of Methanosarcina barkeri. J. Bacteriol., 160: 365–370.

    Google Scholar 

  • Barik, S., W. J. Brulla, M. P. Bryant. 1985. PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plus Wolinella sp. degrades benzenoids. Appl. Environ. Microbiol., 50: 304–310.

    Google Scholar 

  • Barker, H. A. 1956. Bacterial fermentations, p. 1–27. Wiley, New York.

    Google Scholar 

  • Blaut, M., V. Müller, G. Gottschalk. 1990. Energetics of methanogens. In: The Bacteria, Vol. 12 ( J.R. Sokatch and L. Nicholas Omston, eds.), Academic Press, Inc., San Diego, 505–537.

    Google Scholar 

  • Boone, D.R. 1982. Terminal reactions in the anaerobic digestion of animal waste. Appl. Environ. Microbiol., 41: 57–61.

    Google Scholar 

  • Boone, D.R., S. Worakit, I.M. Mathrani, R.A. Mah. 1986. Alkaliphilic methanogens from high-pH lake sediments. J. Syst. Appl. Microbiol., 7. 230–234.

    Article  Google Scholar 

  • Boone, D.R., R.L. Johnson, Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and its implication in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol., 55: 1735–1741.

    Google Scholar 

  • Bryant, M.P. 1979. Microbial methane production: theoretical aspects. J. Anim. Sci., 48: 193–201.

    Google Scholar 

  • Bryant, M.P., E.A. Wolin, M.J. Wolin, R.S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol., 59: 20–31.

    Article  Google Scholar 

  • Buswell, A.M., W.D. Hatfield. 1939. Anaerobic fermentations. Illinois State Water Survey, Urbana, Ill.

    Google Scholar 

  • Cheeseman, P., A. Toms-Wood, R.S. Wolfe. 1972. Isolation and properties of a fluorescent compound, Factor F420i from Methanobacterium strain M.o.H. J. Bacteriol., 112: 527–531.

    Google Scholar 

  • Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    Article  Google Scholar 

  • Conrad, R., B. Wetter. 1990. Influence of temperature on the energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other bacteria. Arch. Microbiol., 155: 94–98.

    Article  Google Scholar 

  • Conrad, R., B. Schink, T.J. Phelps. 1986. Thermodynamics of H2 producing and H2 consuming metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol. Ecol., 38: 353–360.

    Article  Google Scholar 

  • Conrad, R., F. Bak, H.F. Seitz, B. Thebrath, H.P. Mayer, H. Schultz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bcteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol., 62: 285–294.

    Article  Google Scholar 

  • Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass- spectroscopic analysis of carbon dioxide. Geochim. Cosmochim. Acta, 12: 133–149.

    Article  Google Scholar 

  • Dacey, J. W. H., M. J. Klug. 1979. Methane efflux from lake sediments through water lilies. Science 203: 1253–1255.

    Article  Google Scholar 

  • Deppenmeier, U., M. Blaut, A. Jussofie, G. Gottschalk. 1988. A methyl-coM methylreductase system from methanogenic bacterium strain Göl not requiring ATP for activity. FEBS Lett., 241: 60–64.

    Article  Google Scholar 

  • DiMarco, A.A., T. A. Bobik, R.S. Wolfe. 1990. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem., 59: 355–394.

    Article  Google Scholar 

  • Dwyer, D.F., E. Weeg-Aessens, D. R. Shelton, J. M. Tiedje. 1988. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl. Environ. Microbiol., 54: 1354–1359.

    Google Scholar 

  • Ferry, J. G. (ed.) 1993. Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics. Chapman & Hall, New York.

    Google Scholar 

  • Franzmann, P.D., Liu, Y., Balkwill, D.L., Aldrich, H.C., Conway de Macario, E., and Boone, D.R. 1997. Methanogenium frigidum sp. nov., a psychrophilic, HZ using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol. 47: 1068–1072.

    Article  Google Scholar 

  • Franzmann, P.D., Springer, N., Ludwig, W., Conway de Macario, E., and Rohde, M. 1992. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst. Appl. Microbiol. 15: 573–581.

    Article  Google Scholar 

  • Gunsalus, R. P., R. S. Wolfe. 1978. ATP activation and properties of the methyl coenzyme M reductase system in Methanobacterium thermoautotrophicum. J Bacteriol., 135: 851–857.

    Google Scholar 

  • Gunsalus, R. P., R. S. Wolfe. 1980. Methyl coenzyme M reductase from Methanobacterium thermoautotrophicum: resolution and properties of the components. J. Biol. Chem., 255: 1891–1895.

    Google Scholar 

  • Hanson, R.S., A.I. Netrusov, K. Tsuji. 1992. The obligate methanotrophic bacteria: Methylococcus, Methylomonas, and Methylosinus. In: The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (A. Ballows, H.G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), second edition. Springer-Verlag, New York, p. 2350–2364.

    Google Scholar 

  • Hoefs, J. 1987. Stable Isotope Geochemistry, 3rd edition, p. 22–24. Springer-Verlag, New York.

    Google Scholar 

  • Houwen, F. P., C. Dijkema, C. C. H. Schoenmakers, A. J. M. Stams, A. J. B. Zehnder. 1987. 13C-NMR study of propionate degradation by amethanogenic coculture. FEMS Microbiol. Lett., 41: 269–274.

    Google Scholar 

  • Hungate, R.E. 1966. The Rumen and Its Microbes, p. 1–533. Academic Press, New York.

    Google Scholar 

  • Jones, W. J., D.P. Nagel Jr., W.B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev., 51: 135–177.

    Google Scholar 

  • Kandler, O., and H. König. 1985. Cell envelopes of archaebacteria. In: The Bacteria: Vol. VIII, Archaebacteria ( C.R. Woese and R.S. Wolfe, eds.), Academic Press, Orlando, Fla., p. 413–457.

    Google Scholar 

  • Kiene, R. P. 1991. Production and consumption of methane in aquatic sediments. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes ( J.E. Rogers and W.B. Whitman, eds.), American Society for Microbiology, Washington, D.C., p. 111–146.

    Google Scholar 

  • Krumböck, M., R. Conrad. 1991. Metabolism of position-labeled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol., 85: 247–256.

    Article  Google Scholar 

  • Krzycki, J. A., J. G. Zeikus. 1984. Acetate catabolism by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett., 25: 27–32.

    Article  Google Scholar 

  • Langworthy, T. A. 1985. Lipids of archaebacteria. In: The Bacteria: Vol. VIII, Archaebacteria (C.R. Woese and R.S. Wolfe, eds.), Academic Press, Orlando, Fla., p. 413457.

    Google Scholar 

  • Leisinger, T., W. Brunner. 1986. Poorly degradable substances. In: Biotechnology: Microbial Degradations, Vol. 8 ( W. Schönborn, ed.), VCH Verlagsgesellschaft, Weinheim, Germany, p. 475–513.

    Google Scholar 

  • Lidstrom, M.E. 1992. The aerobic methylotrophic bacteria. In: The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (A. Ballows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), second edition. Springer-Verlag, New York, p. 432–445.

    Google Scholar 

  • Liu, Y., D. R. Boone, C. Choy. 1990. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol., 40: 111–116.

    Article  Google Scholar 

  • Ljungdahl, L.G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol., 40: 415–450.

    Article  Google Scholar 

  • Lovley, D. R., S. Goodwin. 1988. Hydrogen concentration as an indicator of the predominant terminal electron acceptor reactions in aquatic sediments. Geochim. Cosmochim. Acta, 52: 2993–3003.

    Article  Google Scholar 

  • Mackie, R. I., M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO, to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol., 41: 1363–1373.

    Google Scholar 

  • Maestrojuân, G.M., D. R. Boone, L. Xun, R.A. Mah, L. Zhang. 1990. Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus, gen. nov., emendation of Methanoculleus marisnigri and Methanogenium, and description of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int. J. Syst. Bacteriol., 40: 117–122.

    Article  Google Scholar 

  • Mah, R.A., M. R. Smith, L. Baresi. 1978. Studies on an acetate-fermenting strain of Biological Formation and Consumption of Methane 61 Methanosarcina. Appl. Environ. Microbiol., 35: 1174–1184.

    Google Scholar 

  • Mathrani, I. M., D. R. Boone, R.A. Mah, G. E. Fox, P.P. Lau. 1988. Methanohalobium zhilinae, gen. nov. sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int. J. Syst. Bacteriol., 38: 139–142.

    Article  Google Scholar 

  • McCarty, P. L. 1964. The methane fermentation. In: Principles and Applications in Aquatic Microbiology ( H. Heukelekian and N.C. Dondero, eds.), John Wiley & Sons, New York, p. 314–343.

    Google Scholar 

  • McInerney, M. J. 1986. Transient and persistent associations among prokaryotes. In: Bacteria in Nature, Vol. 2 ( E. R. Leadbetter and J. S. Poindexter, eds.), Plenum Publishing Corp., New York, p. 293–338.

    Google Scholar 

  • McInerney, M. J., M.P. Bryant, N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol., 122: 129–135.

    Article  Google Scholar 

  • McInerney, M. J., M.P. Bryant, R. B. Hespell, J. W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol., 41: 1029–1039.

    Google Scholar 

  • Miller, T. L. 1991. Biogenic sources of methane. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes ( J. E. Rogers and W. B. Whitman, eds.), Amer. Soc. Microbiol., Washington, D.C., p. 175–187.

    Google Scholar 

  • Nagle, D. P., Jr., R. S. Wolfe. 1983. Component A of the methyl coenzyme M methylreductase system of Methanobacterium: resolution into four components. Proc. Nat. Acad. Sci. USA, 80: 2151–2155.

    Article  Google Scholar 

  • Ni, S., D. R. Boone. 1991. Isolation and characterization of a dimethylsulfide-degrading methanogen from an oil well, characterization of Methanolobus siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol., 41: 410–416.

    Article  Google Scholar 

  • Ni, S., D. R. Boone. 1993. Catabolism of dimetnylsulfide and methane thiol by methylotrophic methanogens. In: R.S. Oremland (ed.) Biogeochemistry of Global Change: Radiatively Active Trace Gases, p. 796–810, Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Oremland, R.S., L. M. Marsh, S. Polcin. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature (London), 296: 143–145.

    Google Scholar 

  • Oremland, R.S., M. J. Whiticar, F. S. Strohmaier, R. P. Kiene. 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim. Cosmochim. Acta, 51: 1895–1904.

    Article  Google Scholar 

  • Oremland, R.S., R. P. Kiene, I. Mathrani, M. J. Whiticar, D. R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethylsulfide. Appl. Environ. Microbiol., 55: 994–1002.

    Google Scholar 

  • Patel, G.B., G.D. Sprott, J. E. Fein. 1990. Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidophilic methanogen. Int. J. Syst. Bacteriol., 40: 12–18.

    Article  Google Scholar 

  • Poirot, C.M., S. W. M. Kengen, E. Valk, J. T. Keltjens, C. van der Drift, G.D. Vogels. 1987. Formation of methylcoenzyme M from formaldehyde by cell-free extracts ofMethanobacterium thermoautotrophicum: evidence for involvement of a corrinoid-containing methyltransferase. FEMSMicrobiol. Lett., 40: 7–13.

    Article  Google Scholar 

  • Reeburgh, W. S. 1976. Methane consumption in Cariaco Trench waters and sediments. Earth Planetary Sci. Lett., 28: 337–344.

    Article  Google Scholar 

  • Reeburgh, W. S., D.T. Heggie. 1977. Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol. Oceanogr., 22: 1–9.

    Article  Google Scholar 

  • Striegl, R. G., A. L. Ishii. 1989. Diffusion and consumption of methane in an unsaturated zone in north-central Illinois, U.S.A. J. Hydrology, 111: 133–143.

    Article  Google Scholar 

  • Taylor, C. D., R. S. Wolfe. 1974. Structure and methylation of coenzyme M (HSCH2CH2SO3). J. Biol. Chem., 249: 4879–4885.

    Google Scholar 

  • Thiele, J. H., J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appt. Environ. Microbiol., 54: 20–29.

    Google Scholar 

  • Tyler, S. C. 1991. The global methane budget. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes ( J.E. Rogers and W.B. Whitman, eds.), Amer. Soc. Microbiol., Washington, D.C., p. 7–38.

    Google Scholar 

  • Van Beeten, P., J. F. A. Labro, J. T. Keltjens, W. J. Geerts, G.D. Vogels, W. H. Laarhoven, W. Guijt, C.A.G. Haasnoot. 1984. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem., 139: 359–365.

    Article  Google Scholar 

  • Vogels, G.D., J. T. Keltjens, van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), John Wiley & Sons, New York, p. 707–770.

    Google Scholar 

  • Walther, R., K. Fahlbusch, R. Sievert, G. Gottschalk. 1981. Formation of trideuteromethane from deuterated trimethylamine or methylamine by Methanosarcina barkeri. J. Bacteriol., 148: 371–373.

    Google Scholar 

  • Whalen, S. C., W. S. Reeburgh. 1988. A methane flux time series for tundra environments. Global Geochem. Cycles, 2: 399–409.

    Article  Google Scholar 

  • Whalen, S. C., W. S. Reeburgh, K. A. Sandbeck. 1990. Rapid methane oxidation in a landfill cover soil. Appt. Environ. Microbiol., 56: 3405–3411.

    Google Scholar 

  • Whiticar, M. J., E. Faber, M. Schoell. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim. Cosmochim. Acta, 50: 693–709.

    Article  Google Scholar 

  • Whitman, W.B. 1985. Methanogenic bacteria. In: The Bacteria: Archaebacteria, Vol. 8 ( C.R. Woese and R.S. Wolfe, eds.), Academic Press, Inc., New York, p. 3–84.

    Google Scholar 

  • Whitman, W. B., T. L. Bowen, D. R. Boone. 1992. The methanogenic bacteria. In: The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, second edition ( A. Ballows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Springer-Verlag, New York, p. 719–767.

    Google Scholar 

  • Winfrey, M. R., J. G. Zeikus. 1979. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appt. Environ. Microbiol., 37: 244–253.

    Google Scholar 

  • Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev., 51: 221–271.

    Google Scholar 

  • Wolin, M. J. 1982. Hydrogen transfer in microbial communities. In: Microbial Interactions and Communities, Vol. 1 ( A.T. Bull and J.H. Slater, eds.), Academic Press, London, p. 323–356.

    Google Scholar 

  • Worakit, S., D. R. Boone, R. A. Mah, M.-E. Abdel-Samie, M. M. El-Halwagi. 1985. Methanobacterium alcaliphilum sp. nov., an H2 utilizing methanogen which grows at high pH values. Mt. J. Syst. Bacteriol., 36: 380–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boone, D.R. (2000). Biological Formation and Consumption of Methane. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics