Skip to main content

Methane in the Global Environment

  • Chapter
Atmospheric Methane

Abstract

The concentration of methane in the atmosphere has increased dramatically over the last few centuries, from 0.7 ppmv to more than 1.7 ppmv, and continues to increase. This increasing concentration of methane (CH4) in the atmosphere is of particular concern because of the potential effects that it can have on global atmospheric chemistry and climate. Given its relatively long atmospheric lifetime, methane emissions do not appear, in general, to have an appreciable effect on local or regional air pollution. However, methane chemistry does have an important influence on the global atmosphere, affecting the amount of ozone (03) in both the troposphere and stratosphere, the amount of hydroxyl (OH) in the troposphere, and the amount of water vapor (H2O) in the stratosphere. Methane oxidation is also an important source of atmospheric carbon monoxide (CO) and formaldehyde (CH2O). Methane is the most abundant reactive trace gas in the troposphere. In addition, methane is a greenhouse gas, and its increasing concentrations are of special interest to concerns about climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bekki, S., K. S. Law, and J. A. Pyle, Effect of ozone depletion on atmospheric CH, and CO concentrations. Nature, 371, 595 - 597, 1994.

    Article  Google Scholar 

  • Blake, D. R., and F. S. Rowland, Continuing worldwide increase in tropospheric methane. 1978 to 1987, Science, 239, 1129 - 1131, 1988.

    Article  Google Scholar 

  • Blanchet, J. P., The response of polar stratospheric clouds to increasing carbon dioxide. Proceedings of the International Radiation Symposium, Lille, France, August, 1988, A. Deepak Publishing, Hampton, Va, 1989.

    Google Scholar 

  • Bojkov, R. J., Surface ozone during the second half of the nineteenth century. J. Clim. Appl. Meteor., 25, 343 - 352, 1986.

    Article  Google Scholar 

  • Brasseur, G., and M. H. Hitchman, Stratospheric response to trace gas perturbations: Changes in ozone and temperature distribution. Science, 240, 634 - 637, 1988.

    Article  Google Scholar 

  • Brenninkmeijer, C. A. M., D. C. Lowe, M. R. Manning, R. J. Sparks and P. F. J. van Velthoven, The 13C, 14C, and 80 isotopic composition of CO, CH4, and CO, in the higher southern latitudes lower stratosphere. J. Geophys. Res., 100, 26, 163 - 26, 172, 1995.

    Google Scholar 

  • Browell, E. V., M. A. Fenn, and others, Large-scale air mass characteristics observed over western Pacific during summertime. J. Geophys. Res., 101, 1691 - 1712, 1996.

    Article  Google Scholar 

  • Brühl, C., The impact of the future scenarios for methane and other chemically active gases on the GWP of methane. Chemosphere, 26, 731 - 738, 1993.

    Article  Google Scholar 

  • Burnett, E. B., and C.R. Burnett, Enhanced production of stratospheric OH from methane oxidation at elevated reactive chlorine levels in northern midlatitudes. J. Atmos. Chem., 21, 13 - 41, 1995.

    Article  Google Scholar 

  • Cicerone, R. J., and R. S. Oremland, Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2, 299 - 327, 1988.

    Article  Google Scholar 

  • Craig, H., and C. C. Chou, Methane record in polar ice cores. Geophys. Res. Lett., 9, 1221 1224, 1982.

    Google Scholar 

  • Crosley, D. R., Measurement of HO„ radicals in the atmosphere. J. Atmos. Sci., 25, 32973298, 1995.

    Google Scholar 

  • Crutzen, P. J., Tropospheric ozone: An overview. in Tropospheric Ozone: Regional and Global Scale Interactions,edited by I.S.A. Isaksen, pp. 3-11,

    Google Scholar 

  • D. Reidel, Boston, 1988. Crutzen, P. J., and P. H. Zimmermann, The changing photochemistry of the troposphere. Tellus, 43AB,136-151, 1991. 336 Wuebbles et al.

    Google Scholar 

  • Daum P H., L.I. Kleinman, L. Newman, W. T. Luke, J. Weinstein-Lloyd, C.M. Berkowitz and K. M. Busness, Chemical and physical properties of plumes of anthropogenic pollutants transported over the North Atlantic during the North Atlantic Regional Experiment. J. Geophys. Res., 101, 29, 029 - 29, 042, 1996.

    Google Scholar 

  • DeLuisi, J. J., D. U. Longenecker, C. L. Mateer, and D. J. Wuebbles, An analysis of northern mid-latitude Umkehr measurements corrected for stratospheric aerosols for 1979-1986. J. Geophys. Res., 94, 9837 - 9845, 1989.

    Article  Google Scholar 

  • DeMore, W. B., S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, NASA Jet Propulsion Laboratory, JPL Publication 97 - 4, 1997.

    Google Scholar 

  • Dickinson, R. E., and R. J. Cicerone, Future global warming from atmospheric trace gases. Nature, 319, 109 - 115, 1986.

    Article  Google Scholar 

  • Donner, L., and V. Ramanathan, Methane and nitrous oxide: Their effects on the terrestrial climate. J. Atmos. Sci., 37, 119 - 124, 1980.

    Article  Google Scholar 

  • Ehhalt, D.H., On the consequence of a tropospheric CH, increase to the exospheric density. J. Geophys. Res., 91, 2843, 1986.

    Article  Google Scholar 

  • Ehhalt, D. H., H.-P. Dorn, and D. Poppe, The chemistry of the hydroxyl radical in the troposphere. Proc. Royal Soc. Edinburgh, 97B, 17 - 34, 1991.

    Google Scholar 

  • Ellsaesser, H. W., J. E. Harries, D. Kley, and R. Penndorf, Stratospheric H20. Planet. Space Sci., 28, 827 - 835, 1980.

    Article  Google Scholar 

  • Fishman, J., Ozone in the troposphere. in Ozone in the free atmosphere edited by R.C. Whitten and S.S. Prasad, pp. 161 - 194, Van Nostrand Reinhold, New York, 1985.

    Google Scholar 

  • Fishman, J., S. Solomon, and P. J. Crutzen, Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 31, 432 - 446, 1979.

    Article  Google Scholar 

  • Fuglestvedt, J. S., I. S. A., Isaksen and W.-C. Wang, Estimates of indirect Global Warming Potentials for CH4, CO and NOR. Climatic Change, 34, 405 - 437, 1996.

    Article  Google Scholar 

  • Guenther, A., et al., A global model of natural volatile organic compound emissions. J. Geophys. Res., 100, 8873 - 8892, 1995.

    Article  Google Scholar 

  • Hansen, A.R., and G.D. Robinson, Water vapor and methane in the upper stratosphere: An examination of some of the Nimbus 7 measurements. J. Geophys. Res., 94, 8474 - 8484, 1989.

    Article  Google Scholar 

  • Hansen, J., A. Lacis, and M. Prather, Greenhouse effect of chlorofluorocarbons and other trace gases. J. Geophys. Res., 94, 16417 - 16421, 1989.

    Article  Google Scholar 

  • Hansen, J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, and P. Stone, Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res., 93, 9341 - 9364, 1988.

    Article  Google Scholar 

  • Hauglustaine, D.A., C. Granier, G. P. Brasseur and G. Megie, The importance of atmospheric chemistry in the cal;culation of radiative forcing on the climate system. J. Geophys. Res., 99, 1173 - 1186, 1994.

    Article  Google Scholar 

  • Heikes, B. G., Meehye Lee, and others, Hydrogen peroxide and methylhydroperoxide distributions related to ozone and odd hydrogen over the North Pacific in the fall of 1991. J. Geophys. Res., 101,:891-1906, 1996.

    Google Scholar 

  • Hough, A. M., The development of a two-dimensional global tropospheric model: The model chemistry. J. Geophys. Res., 96, 7325 - 7362, 1991.

    Article  Google Scholar 

  • Hough, A. M.,, and R. G. Derwent, Changes in the global concentration of tropospheric ozone due to human activities. Nature, 344, 645 - 648, 1990.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change, Climate Change: The IPCC Scientific Assessment,Houghton, J. T., G. J. Jenkins, and J. J. Ephraums (eds.), Cambridge University Press, Cambridge, 1990. Methane in the Global Environment 337

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 1994: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios, J. T. Houghton, Meira Filho, L.G., Lee, H., Callander, B.A., Haites, E., Harris, N., and Maskell, K. (Eds.). Cambridge University press, Cambridge, UK, 1995.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 1995: The Science of Climate Change. J.T. Houghton, Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K. (Eds.). Cambridge University Press, Cambridge, UK, 1996.

    Google Scholar 

  • Isaksen, I. S. A., Is the oxidizing capacity of the atmosphere changing, in The Changing Atmosphere, edited by F.S. Rowland and I.S.A. Isaksen, pp. 141 - 157. New York: John Wiley Sons, 1988.

    Google Scholar 

  • Isaksen, I. S. A., and O. Hov, Calculation of trends in the tropospheric concentration of 03, OH, CO, CH„ and NOx. Tellus, 39B, 271 - 285, 1987.

    Google Scholar 

  • Isaksen, I. S. A., and F. Stordal, Ozone perturbations by enhanced levels of CFCs, N2O, and CH4: A two-dimensional diabatic circulation study including uncertainty estimates. J. Geophys. Res., 91, 5249 - 5263, 1986.

    Article  Google Scholar 

  • JAS (special issue), Measurement of HO„ radicals in the atmosphere, J. Atmos. Science, 52, 3297 - 3441, 1995.

    Article  Google Scholar 

  • JGR (special issue), 1993 Tropospheric OH photochemistry experiment. J. Geophys. Res., 88, 5, 131 - 5, 144, 1983.

    Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 102, 6169 - 6510, 1983.

    Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Carbon monoxide in the earths atmosphere. Science, 224, 54 - 56, 1984.

    Article  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Causes of increasing atmospheric methane: Depletion of hydroxyl radicals and the rise of emissions. Atmospheric Environment, 13, 397 - 407, 1985.

    Google Scholar 

  • Khalil, M.A.K., and R. A. Rasmussen, Carbon monoxide in the earths atmosphere; indications of a global increase. Nature, 332, 242 - 245, 1988.

    Article  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Temporal variations of trace gases in ice cores. In The Environmental Record in Glaciers and Ice Sheets, (H. Oeschger and C. C. Langway, Jr., eds.) John Wiley and Sons Limited, New York, p. 193 - 205, 1989.

    Google Scholar 

  • Khalil, M.A.K., and R. A. Rasmussen, Atmospheric methane: recent global trends. Environ. Sci. Tech., 24, 549 - 553, 1990.

    Article  Google Scholar 

  • Khalil, M.A.K., and R. A. Rasmussen, Global decreases in atmospheric carbon monoxide concentration. Nature, 370, 639 - 641, 1994.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen, and M. J. Shearer, Trends of atmospheric methane during the 1960s and 1970s. 1 J. Geophys. Res., 94, 18, 279 - 18, 288, 1989.

    Google Scholar 

  • Kleinman, L.I., P.H. Daum, Y-N. Lee, et al., Measurement of 03 and related compounds over southern Nova Scotia 1. Vertical distributions. J. Geophys. Res., 101, 29, 043 - 29, 060, 1996.

    Google Scholar 

  • Kley, D., P. J. Crutzen, H. G. J. Smit, H. Vomel, S.J. Oltmans, H. Grassi and V. Ramanathan, Observations of near-zero ozone concentrations over the convective Pacific: effects on air chemistry. Science, 274, 230 - 233, 1996.

    Article  Google Scholar 

  • Lacis, A., J. Hansen, P. Lee, T. Mitchell, and S. Lebedeff, Greenhouse effect of trace gases, 1970-1980. Geophys. Res. Lett., 8, 1035 - 1038, 1981.

    Article  Google Scholar 

  • Lacis, A.A., D. J. Wuebbles, and J. A. Logan, Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res., 95, 9971 - 9981, 1990.

    Article  Google Scholar 

  • Lashof, D. A., The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climatic Change, 14, 213242, 1989.

    Google Scholar 

  • Le Texier, L., S. Solomon, and R. R. Garcia, The role of molecular hydrogen and methane oxidation in the water vapor budget of the stratosphere. Q. J. Roy. Meteorol. Soc., 114, 281 - 296, 1988.

    Article  Google Scholar 

  • Lelieveld, J., and P. J. Crutzen, The role of clouds in tropospheric photochemistry. J. Atmos. Chem., 12, 229 - 267, 1991.

    Article  Google Scholar 

  • Lelieveld, J., and P. J. Crutzen, Indirect chemical effects of methane on global warming, Nature, 355, 339 - 342, 1992.

    Article  Google Scholar 

  • Lelieveld, J., P. J. Crutzen, and C. Brühl, Climate effects of atmospheric methane, Chemosphere, 26, 739 - 768, 1993.

    Article  Google Scholar 

  • Levine, J. S., C. P. Rinsland, and G.M. Tennille, The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature, 318, 254, 1985.

    Google Scholar 

  • Liu, S.C., M. McFarland, D. Kley, O. Zafiriou, and B.J. Huebert, Tropospheric NOx and 03 budgets in the equatorial Pacific. J. Geophys. Res., 88, 1360 - 1368, 1983.

    Article  Google Scholar 

  • Liu, S.C., R.A. Cox, P. J. Crutzen, D.H. Ehhalt, R. Guicherit, A. Hofzumahaus, D. Kley, S.A. Penkett, L.F. Phillips, D. Poppe, and F.S. Rowland, Group report: Oxidizing capacity of the atmosphere. In The Changing Atmosphere, edited by F.S. Rowland and I.S.A. Isaksen, pp. 219 - 232. New York: John Wiley & Sons, 1988.

    Google Scholar 

  • Logan, J. A., Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence. J. Geophys. Res., 90, 10463 - 10482, 1985.

    Article  Google Scholar 

  • Logan J. A., Trends in the vertical distribution of ozone: An analysis of ozonesonde data. J. Geophys. Res., 99, 25, 553 - 25, 585, 1994.

    Google Scholar 

  • Logan, J. A., M. J. Prather, S.C. Wofsy, and M. B. McElroy, Tropospheric Chemistry: A Global Perspective. J. Geophys. Res., 86, 2210 - 7254, 1981.

    Article  Google Scholar 

  • Lowe, D.C. and U. Schmidt, Formaldehyde (HCHO) measurements in the nonurban atmosphere. J. Geophys. Res., 88, 10844 - 10858, 1983.

    Article  Google Scholar 

  • Lu, Y., and M. A. K. Khalil, Tropospheric OH: Model calculations of spatial, temporal, and secular variations. Chemosphere, 23, 397 - 444, 1991.

    Article  Google Scholar 

  • MacDonald, G. J., Role of methane clathrates in past and future climates. Climatic Change, 16, 247 - 281, 1990.

    Article  Google Scholar 

  • MacKay, R. M., and M. A. K. Khalil, Theory and development of a one dimensional time dependent radiative convective climate model. Chemosphere, 22, 383 - 417, 1991.

    Article  Google Scholar 

  • Miller, A. J., R. M. Nagatani, G. C. Tiao, X. F. Niu, G. C. Reinsel, D. Wuebbles, and K. Grant, Comparisons of observed ozone and temperature trends in the lower stratosphere. Geophys. Res. Lett., 19, 929 - 932, 1992.

    Article  Google Scholar 

  • Nisbet, E., Did the release of methane from hydrates accelerate the end of the last ice age? Can. J. Earth Sci., 27, 148 - 157, 1990a.

    Article  Google Scholar 

  • Nisbet, E., Climate change and methane. Nature, 347, 23, 1990b.

    Article  Google Scholar 

  • Novelli, P. C., K. A. Masarie, P. T. Tans, and P. M. Lang, Recent changes in atmospheric carbon monoxide. Science, 263, 1587 - 1590, 1994.

    Article  Google Scholar 

  • Oltmans, S. J., and H. Levy II, Surface ozone measurements from a global network. Atmos. Environ., 28, 9 - 24, 1994.

    Article  Google Scholar 

  • Owens, A. J., J. M. Steed, D. L. Filkin, C. Miller, and J. P. Jesson, The potential effects of increased methane on atmospheric ozone. Geophys. Res. Letters, 9, 1105 - 1108, 1982.

    Article  Google Scholar 

  • Owens, A. J., C. H. Hales, D. L. Filkin, C. Miller, J. M. Steed, and J. P. Jesson, A coupled one-dimensional radiative-convective, chemistry-transport model of the atmosphere: 1. Model structure and steady state perturbation calculations. J. Geophys. Res., 90, 2283 - 2311, 1985.

    Article  Google Scholar 

  • Parameswaran, K., and B. V. Krishna Murthy, Altitude profiles of tropospheric water vapor at low latitudes. J. Appl. Meteor., 29, 665 - 679, 1990.

    Article  Google Scholar 

  • Penkett, S. A., Indications and causes of ozone increase in the troposphere. In The Changing Atmosphere,edited by F.S. Rowland and I.S.A. Isaksen, pp. 91-103, John Wiley & Sons, New York, 1988. Methane in the Global Environment 339

    Google Scholar 

  • Pinto, J. P., and M. A. K. Khalil, The stability of tropospheric OH during ice ages, inter-glacial epochs and modern times. Tellus, 43B, 347 - 352, 1991.

    Google Scholar 

  • Prather, M. J., Lifetimes and eigenstates in atmospheric chemistry. Geophys. Res. Lett., 21, 801 - 804, 1994.

    Article  Google Scholar 

  • Prinn, R., D. Cunnold, P. Simmonds, F. Alyea, R. Boldi, A. Crawford, P. Fraser, D. Gutzler,

    Google Scholar 

  • D. Hartley, R. Rosen, and R. Rasmussen, Global averageconecntartion and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990. J. Geophys. Res., 97, 2445 - 2461, 1992.

    Article  Google Scholar 

  • Prinn, R. G., R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. J. Fraser, D. E. Hartley, and P.G. Simmonds, Atmospheric trends and lifetime of CH,CC1, and global OH concentrations. Science, 269, 187 - 192, 1995.

    Article  Google Scholar 

  • Ramanathan, V., The greenhouse theory of climate change: A test by an inadvertent global experiment. Science, 240, 293 - 299, 1988a.

    Article  Google Scholar 

  • Ramanathan, V., The radiative and climatic consequences of the changing atmospheric composition of trace gases. In The Changing Atmosphere, edited by F. S. Rowland and I. S. A. Isaksen, pp. 159 - 186. New York: John Wiley & Sons, 1988b.

    Google Scholar 

  • Ramanathan, V., R. J. Cicerone, H. B. Singh, and J. T. Kiehl, Trace gas trends and their potential role in climate change. J. Geophys. Res., 90, 5547 - 5566, 1985.

    Article  Google Scholar 

  • Ramanathan, V., L. Callis, R. Cess, J. Hansen, I. Isaksen, W. Kuhn, A. Lacis, F. Luther, J. Mahlman, R. Reck, and M. Schlesinger, Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. of Geophys., 25, 1441 - 1482, 1987.

    Article  Google Scholar 

  • Rasmussen, R. A., and M. A. K. Khalil, Atmospheric methane (CH,): trends and seasonal cycles. J. Geophys. Res., 86, 9, 826 - 9, 832, 1981.

    Google Scholar 

  • Roble, R. G., and R. E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Ltrs., 16, 1441 1444, 1989.

    Google Scholar 

  • Rodhe, H., A comparison of the contribution of various gases to the greenhouse effect. Science, 248, 1217 - 1219, 1990.

    Article  Google Scholar 

  • Schwab, J. J., E. M. Weinstock, J. B. Nee, and J. G. Anderson, In situ measurement of water vapor in the stratosphere with a cryogenically cooled Lyman-alpha hygrometer. J. Geophys. Res., 95, 13,781-13,796, 1990.

    Google Scholar 

  • Shine, K. P., The greenhouse effect. In Ozone Depletion: Health and Environmental Consequences, edited by R. R. Jones and T. Wigley, pp. 71 - 83. John Wiley & Sons, New York, 1989.

    Google Scholar 

  • Solomon, S., The mystery of the Antarctic ozone hole, Rev. Geophys., 26, 131 - 148, 1988.

    Article  Google Scholar 

  • Steele, L. P., P. J. Fraser, R. A. Rasmussen, M. A. K. Khalil, T. J. Conway, A. J. Crawford, R. H. Gammon, K. A. Masarie, and K. W. Thoning. The global distribution of methane in the troposphere, J, Atmos. Chem., 5, 125 - 171, 1987.

    Article  Google Scholar 

  • Stolarski, R. S., P. Bloomfield, R. D. McPeters, and J. R. Herman, Total ozone trends deduced from Nimbus 7 TOMS data. Geophys. Res. Lett., 18, 1015 - 1018, 1991.

    Article  Google Scholar 

  • Stordal, F., and I. S. A. Isaksen, Ozone perturbations due to increases in NZO, CH„ and chlorocarbons: two-dimensional time-dependent calculations. Tellus, 39B, 333 - 353, 1987.

    Google Scholar 

  • Strand, A., and O. Hov, A two-dimensional zonally averaged transport model including convective motions and a new strategy for the numerical solution. J Geophys Res 1860 to 1985 98, 9023 - 9027, 1993.

    Article  Google Scholar 

  • Thomas, G. E., J. J. Olivero, E. J. Jensen, W. Schroeder, and O. B. Toon, Relation between increasing methane and the presence of ice clouds at the mesopause. Nature, 338, 490 - 492, 1989.

    Article  Google Scholar 

  • Thompson, A. M., The oxidizing capacity of earths atmosphere: probable past and future changes. Science, 256, 1157 - 1165, 1992.

    Article  Google Scholar 

  • Thompson, A. M., and R. J. Cicerone, Possible perturbations to atmospheric CO, CH„ and OH. J. Geophys. Res., 91, 10853 - 10864, 1986a.

    Article  Google Scholar 

  • Thompson, A. M., and R. J. Cicerone, Atmospheric CH„ CO, and OH from 1860 to 1985. Nature, 321, 148 - 150, 1986b.

    Article  Google Scholar 

  • Thompson, A. M., and M. Kavanaugh, Tropospheric CH,/CO/NOx: The next fifty years. in Effects of Changes in Stratospheric Ozone and Global Climate, vol. 2, United Nations Environmental Program Report, 1986.

    Google Scholar 

  • Thompson, A. M., R. W. Stewart, M. A. Owens, and J. A. Herwehe. Sensitivity of tropospheric oxidants to global chemical and climate change. Atmospheric Environment, 23, 519 - 532, 1989.

    Article  Google Scholar 

  • Thompson, A. M., M. A. Huntley, and R. W. Stewart, Perturbations to tropospheric oxidants, 1985-2035: 1. Calculations of ozone and OH in chemically coherent regions, J. Geophys. Res., 95, 9829 - 9844, 1990.

    Article  Google Scholar 

  • Tiao, G. C., G. C. Reinsel, J. H. Pedrick, G. M. Allenby, C. L. Mateer, A. J. Miller, and J. J. DeLuisi, A statistical trend analysis of ozonesonde data. J. Geophys. Res., 91, 1312113136, 1986.

    Google Scholar 

  • Volz, A., and D. Kley, Evaluation of the Monteouris series of ozone measurements made in the nineteenth century. Nature, 332, 240 - 242, 1988.

    Article  Google Scholar 

  • Wallace, L., and W. Livingston, Spectroscopic observations of atmospheric trace gases over Kitt Peak: 1. Carbon dioxide and methane from 1979 to 1985. J. Geophys. Res., 85, 9, 8239, 827, 1990.

    Google Scholar 

  • Wang, W.C., Y. L. Yung, A.A. Lacis, T. Mo, and J. E. Hansen, Greenhouse effects due to man-made perturbations of trace gases. Science, 194, 685 - 690, 1976.

    Article  Google Scholar 

  • Wang, W.C., and G. Molnar, A model study of the greenhouse effects due to increasing atmospheric CH„ N20, CF2Cl2, and CFCI3. J. Geophys. Res., 90, 12971 - 12980, 1985.

    Article  Google Scholar 

  • Wang, W.C., D.J. Wuebbles, W. M. Washington, R. G. Isaacs, and G. Molnar, Trace gases and other potential perturbations to global climate. Rev. of Geophysics, 24, 110 - 140, 1986.

    Article  Google Scholar 

  • Wang, W.C., M.P. Dudek, X. Z. Liang, J. T. Kiehl, Inadequacy of effective CO2 as a proxy in simulating the greenhouse effect of other radiatively active gases. Nature, 350, 573 - 577, 1991.

    Article  Google Scholar 

  • Wennberg, P.O., R. C. Cohen, R. M. Stimpfle, J. P. Koplow et al., Removal of stratospheric 03 by radicals: In situ measurements of OH, HO2, NO, NO2, C10, and BrO. Science, 266, 398 - 404, 1994.

    Article  Google Scholar 

  • Wigley, T. M. L., Relative contributions of different trace gases to the greenhouse effect. Climate Monitor, 16, 14 - 28, 1987.

    Google Scholar 

  • World Meteorological Organization, Atmospheric Ozone 1985, WMO Global Ozone Res. and Monit. Proj., Report 16, Geneva: WMO, 1985.

    Google Scholar 

  • World Meteorological Organization, Report of the International Ozone Trends Panel 1988, Global Ozone Res. and Monit. Proj., Report No. 18, Geneva: WMO, 1988.

    Google Scholar 

  • World Meteorological Organization, Scientific Assessment of Stratospheric Ozone 1989, Global Ozone Res. and Monit. Proj., Report 20, Geneva: WMO, 1989.

    Google Scholar 

  • World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1991, Global Ozone Res. and Monit. Proj. Report 25, Geneva: WMO, 1991.

    Google Scholar 

  • World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project, Report No. 37, Geneva: WMO, 1995.

    Google Scholar 

  • Wuebbles, D. J. and J. Edmonds, A primer on greenhouse gases. Lewis Publishers, Chelsea, MI, 1991.

    Google Scholar 

  • Wuebbles, D. J., and K.E. Grant, Indirect effects on climatic forcing from stratospheric water vapor resulting from increased concentrations of CH, and H2. Lawrence Livermore National Laboratory, 1991; results also described in WMO, 1991.

    Google Scholar 

  • Wuebbles, D. J., and D. E. Kinnison, Predictions of future ozone changes. Int. J. Environ. Studies, 51, 269 - 283, 1996.

    Article  Google Scholar 

  • Wuebbles, D. J., and J. Tamaresis, The role of methane in the global environment., Atmospheric Methane, M.A.K. Khalil, editor, Springer-Verlag Publishers, 1993.

    Google Scholar 

  • Wuebbles, D. J., F. M. Luther, and J. E. Penner, Effect of coupled anthropogenic perturbations on stratospheric ozone. J. Geophys. Res., 88, 1, 444 - 1, 456, 1983.

    Google Scholar 

  • Wuebbles, D. J., K. E. Grant, P. S. Connell, and J. E. Penner, The role of atmospheric chemistry in climate change. JAPCA, 39, 22 - 28, 1989.

    Article  Google Scholar 

  • Wuebbles, D. J., D. E. Kinnison, K. E. Grant, and J. Lean, The effect of solar flux variations and trace gas emissions on recent trends in stratospheric ozone and temperature. J. Geomagnetism and Geoelectricity, 43, 709 - 718, 1991a.

    Article  Google Scholar 

  • Wuebbles, D. J., J. S. Tamaresis, and D. E. Kinnison, Effects of increasing methane on tropospheric and stratospheric chemistry, paper presented at the NATO Advanced Research Workshop on the Atmospheric Methane Cycle: Sources, Sinks, Distributions, and Role in Global Change, Portland, Oregon, 199 lb.

    Google Scholar 

  • Zander, R., H. Demoulin, D.H. Ehhalt, U. Schmidt, and C. P. Rinsland, Secular increase of the total vertical column abundance of carbon monoxide above central Europe since 1950. J. Geophys. Res., 94, 11, 021 - 11, 028, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wuebbles, D.J., Hayhoe, K.A.S., Kotamarthi, R. (2000). Methane in the Global Environment. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics