Skip to main content

Wetlands

  • Chapter
Atmospheric Methane

Abstract

Wetlands are most likely the largest natural source of methane to the atmosphere accounting for ~20% of the current global annual emission of ~450–550 Tg (1012 g) (Khalil and Rasmussen, 1983; Cicerone and Oremland, 1988; Fung et al., 1991; Crutzen, 1991; Houghton et al., 1996). Measurements of methane from Greenland and Antarctic ice cores indicate atmospheric concentrations of ~350 ppbv during the Last Glacial Maximum rising to 650 ppbv during the pre-industrial Holocene (Stauffer et al., 1988; Chappellaz et al., 1990). Preindustrial source strengths of methane, consistent with historical concentrations and estimates based on isotopes, have been estimated at ~180–380 Tg methane annually (Khalil and Rasmussen,1987; Stauffer et al., 1985; Chappellaz et al., 1993). Wetlands were the dominant preindustrial source with smaller contributions from wild fires, animals and oceans. During the last two hundred years, atmospheric methane concentrations have more than doubled to ~1750 ppbv (Etheridge et al., 1992). Annual increases of ~0.6% yr−1 in the 1980s declined to ~0.1% yr−1 in the 1990s (Rasmussen and Khalil, 1981; Craig and Chou, 1982; Khalil and Rasmussen, 1982, 1983, 1985; Ehhalt et al., 1983; Rasmussen and Khalil, 1984; Stauffer et al., 1985; Blake and Rowland, 1986, 1988; Pearman et al., 1986; Steele et al., 1987; Blake et al., 1988; Khalil et al., 1989; Lang et al., 1990a,b; Dlugokencky et al., 1994a,b, 1997). Currently, the total annual emission of methane is about twice that estimated for the preindustrial period, but both the relative and absolute contribution of wetlands is smaller than in the past due to increases in anthropogenic sources and reductions in wetland areas. However, climate and related biological interactions that presently control the distribution of wetlands and their methane emissions are expected to change during the next 50 to 100 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achutuni, R., R. A. Scofield, N. C. Grody and C. Tsai, Global monitoring of large flooding using the DMSP SSM/I soil wetness index, paper presented at Annual Meeting, American Meteorol. Soc., Atlanta, Ga., 1996.

    Google Scholar 

  • Aselmann, I., and P. Crutzen, Global distribution of natural freshwater wetlands and rice paddies: Their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem., 8, 307–358, 1989.

    Article  Google Scholar 

  • Auerbach, N. A., D. A. Walker, and J. G. Bockheim, Land cover map of the Kuparuk River Basin, Alaska, Institute of Arctic and Alpine Research, University of Colorado, 1997.

    Google Scholar 

  • Baker-Blocker A, T. M. Donohue, and K. H. Mancy, Methane flux from wetland areas, Tellus, 29, 245–250, 1977.

    Article  Google Scholar 

  • Barber, T. R., R. A. Burke, Jr., and W. M. Sackett, Diffusive flux of methane from warm wetlands, Global Biogeochem. Cycles, 2, 411–414, 25, 1988.

    Article  Google Scholar 

  • Bartlett, D. S., K. B. Bartlett, J. M. Hartman, R. C. Harriss, D. I. Sebacher, R. Pelletier-Travis, D. D. Dow, and D. P. Brannon, Methane emissions from the Florida Everglades: Patterns of variability in a regional wetland ecosystem, Global Biogeochem. Cycles, 3, 363–374, 1989.

    Article  Google Scholar 

  • Bartlett, K. B., and R. C. Harriss, Review and assessment of methane emissions from wetlands, Chemosphere, 26, 261–320, 1993.

    Article  Google Scholar 

  • Bartlett, K. B., P. M. Crill, D. I. Sebacher, R. C. Harriss, J. O. Wilson, and J. M. Melack, Methane flux from the central Amazonian floodplain, J. Geophys. Res., 93, 1571–1582, 1988.

    Article  Google Scholar 

  • Bartlett, K. B., P. M. Crill, J. A. Bonassi, J. E. Richey, R. C. Harriss, Methane flux from the Amazon River floodplain: Emissions during rising water, J. Geophys. Res., 95, 16, 773–16, 788, 1990.

    Google Scholar 

  • Bartlett, K. B., P. M. Crill, R. L. Sass, R. C. Harriss, N. B. Dise, Methane emissions from tundra environments in the Yukon-Kuskowim Delta, Alaska, J. Geophys. Res., 97,16, 645–16, 660, 1992.

    Google Scholar 

  • Bartlett, K. B., R. C. Harriss, D. I. Sebacher, Methane flux from coastal salt marshes, J. Geophys. Res., 90, 5710–5720, 1985.

    Article  Google Scholar 

  • Blake, D. R., and F. S. Rowland, Continuing worldwide increase in tropospheric methane, 1978 to 1987, Science, 239, 1129–1131, 1988.

    Article  Google Scholar 

  • Blake, D. R., and F. S. Rowland, Worldwide increase in tropospheric methane, 1978 to 1983, J. Atmos. Chem., 4, 43–62, 1986.

    Article  Google Scholar 

  • Blake, D. R., E. W. Mayer, S. C. Tyler, Y. Makide, D. C. Montague, and F. S. Rowland, Global increase in atmospheric methane concentrations between 1978 and 1980, Geophys. Res. Lett., 9, 477–480, 1988.

    Article  Google Scholar 

  • Blake, D. R., Increasing concentrations of atmospheric methane. PhD thesis, 213p, University of California at Irvine, 1984.

    Google Scholar 

  • Bridgham, S. D., C. A. Johnson, J. pastor, and K. Updegraff, Potential feedbacks of northern wetlands on climate change, BioScience, 45, 262–274, 1995.

    Article  Google Scholar 

  • Bubier, J. L., and T. R. Moore, an ecological perspective on methane emissions from emissions from northern wetlands, Trends Ecol. Evol., 9, 460–464, 1994.

    Article  Google Scholar 

  • Bubier, J. L., T. Moore, and S. Juggins, Predicting methane emission from bryophyte distribution in northern Canadian peatlands, Ecology, 76, 677–693, 1995b.

    Article  Google Scholar 

  • Bubier, J. L., T. R. Moore, L. Bellisario, N. Corner, and P. M. Crill, Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem. Cycles, 9, 455–470, 1995a.

    Article  Google Scholar 

  • Burke, R. A., Jr., T. R. Barber, and W. M. Sackett, Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades, Global Biogeochem. Cycles, 2, 329–340, 1988.

    Article  Google Scholar 

  • Cao, M., S. Marshall, and K. Gregson, Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 14, 399–14, 414, 1996.

    Google Scholar 

  • Chappellaz, J. A., I. Y. Fung, and A. M. Thompson, The atmospheric CH4 increase since the Last Glacial Maximum, I. Source estimates, Tellus, 45B, 228–241, 1993.

    Article  Google Scholar 

  • Chappellaz, J. A., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, Ice-core record of atmospheric methane over the past 160,000 years, Nature, 345, 127–131, 1990.

    Article  Google Scholar 

  • Choudhury, B. J., Microwave vegetation index: A new long-term global data set for biospheric studies, Int. J. Remote Sens., 9, 185–186, 1988.

    Article  Google Scholar 

  • Choudhury, B. J., Monitoring global land surface using Nimbus-7 37 GHz data. Theory and examples, Int. J. Remote Sens., 10, 1579–1605, 1989.

    Article  Google Scholar 

  • Christensen, T. R., Methane emission from Arctic tundra, Biogeochemistry, 21, 117–139, 1993.

    Article  Google Scholar 

  • Christensen, T. R., and P. Cox, Response of methane emission from arctic tundra to climatic change: Results from a model simulation, Tellus, 47B, 301–309, 1995.

    Article  Google Scholar 

  • Christensen, T. R., S. Jonasson, T. V. Callaghan, and M. Hayström, Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments, J. Geophys. Res., 100, 21, 035–21, 045, 1995.

    Google Scholar 

  • Christensen, T. R., I. C. Prentice, J. Kaplan, A. Haxeltine, and S. Stitch, Methane flux from northern wetlands and tundra, an ecosystem source modeling approach, Tellus, 48B, 65 2661, 1996.

    Google Scholar 

  • Cicerone, R. J., and J. D. Shetter, Sources of atmospheric methane: Measurements in rice paddies and a discussion, J. Geophys. Res., 86, 7203–7209, 1981.

    Article  Google Scholar 

  • Cicerone, R. J., and R. S. Oremland, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2, 299–327, 1988.

    Article  Google Scholar 

  • Coe, M. T., A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands, J. Geophys. Res., 103, 8885–8899, 1998.

    Article  Google Scholar 

  • Coe, M.T., Simulating continental surface waters: An application to Holocene northern Africa, J. Clim., 10, 1680–1689, 1997.

    Article  Google Scholar 

  • Craig H., and Chou, C. C., Methane: The record in polar ice cores, Geophys. Res. Lett., 9, 1221–1224, 1982.

    Article  Google Scholar 

  • Crill, P. M., K. B. Bartlett, HR. C. Harriss, E. Gorham, E. S. Verry, D. I. Sebacher, L. Madzar, and W. Sanner, Methane flux from Minnesota peatlands, Global Biogeochem. Cycles, 2, 371–384, 1988a.

    Article  Google Scholar 

  • Crill, P. M., K. B. Bartlett, J. O. Wilson, D. I. Sebacher, and R. C. Harriss, Tropospheric methane from an Amazonian floodplain lake, J. Geophys. Res., 93, 1564–1570, 1988b.

    Article  Google Scholar 

  • Crutzen, P. J., Methane sources and sinks, Nature, 350, 380–381, 1991.

    Article  Google Scholar 

  • Dacey, J. W. H., and M. Klug, Methane flux from lake sediments through water lilies, Science, 203, 1253–1255, 1979.

    Article  Google Scholar 

  • DeFries, R., and J. R. G. Townshend, NDVI-derived land cover classifications at the global scale, Int. J. Rem. Sens., 15, 3567–3586, 1994.

    Article  Google Scholar 

  • Delmas, R. A., J. Servant, J.-P. Tathy, B. Cros, M. and Labat, Sources and sinks of methane and carbon dioxide exchanges in mountain forest in Equatorial Africa, J. Geophys. Res., 97, 6169–6179, 1992.

    Article  Google Scholar 

  • Devol, A. H., J. E. Richey, B. R. Forsberg, and L. A. Martinelli, Seasonal dynamics of methane emissions from the Amazon River floodplain to the troposphere, J. Geophys. Res., 95, 16, 417–16, 426, 1990.

    Google Scholar 

  • Devol, A. H., J. E. Richey, W. A. Clark, and S. L. King, Methane emissions to the troposphere from the Amazon Floodplain. J. Geophys. Res., 93, 1583–1592, 1988.

    Article  Google Scholar 

  • Dise, N. B., E. Gorham, and E. S. Verry, Environmental factors controlling methane emissions from peatlands in northern Minnesota, J. Geophys. Res., 98, 10, 583–10, 594, 1993.

    Google Scholar 

  • Dise, N. B., Winter fluxes if methane in Minnesota peatlands, Biogeochemistry, 17, 71–83, 1992.

    Article  Google Scholar 

  • Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, J. Geophys. Res., 99, 17, 021–17, 043, 1994a.

    Google Scholar 

  • Dlugokencky, E., K. A. Masarie, P. M. Lang, P. P. Tans, Continuing decline in the growth rate of atmospheric methane, Nature, 393 (6684), 447–450, 1998.

    Article  Google Scholar 

  • Dlugokencky, E., K. A. Masarie, P. M. Lang, P. P. Tans, L. P. Steele, and E. G. Nisbet, A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992, Geophys. Res. Lett., 21, 45–48, 1994b.

    Article  Google Scholar 

  • Edwards, G. C., H. H. Neumann, G. Den Hartog, G. W. Thurtell, and G. Kidd, Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo lake tower site during the northern wetlands study (NOWES), J. Geophys. Res., 99, 1511–1517, 1994.

    Article  Google Scholar 

  • Ehhalt, D. H. and U. Schmidt, Sources and sinks of atmospheric methane, Pageoph., 116, 452–464, 1978.

    Article  Google Scholar 

  • Ehhalt, D. H., R. J. Zander, and R. A. Lamontagne, On the temporal increase of tropospheric CH4, J. Geophys. Res., 88, 8442–8446, 1983.

    Article  Google Scholar 

  • Ehhalt, D. H., The atmospheric cycle of methane, Tellus, 26, 58–70, 1974.

    Article  Google Scholar 

  • Etheridge, D. M., G. I. Pearman, and P. J. Fraser, Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core, Tellus, 44, 282–294, 1992.

    Article  Google Scholar 

  • Fan, S.-M., S. C. Wofsy, P. S. Bakwin, D. J. Jacob, S. M. Anderson, P. L. Kebabian, J. B. McManus, C. E. Kolb, D. R. Fitzjarrald, Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and the Subarctic tundra, J. Geophys. Res., 97, 16, 627–16, 643, 1992.

    Google Scholar 

  • Fontan, J., A. Druilhet, B. Benech, R. Lyra, B. Cros, The DECAFE experiments: Overview and meteorology, J. Geophys. Res., 97, 6123–6136, 1992.

    Article  Google Scholar 

  • Frolking S., Methane from northern peatlands and climate change, in. S. Vinson and T. P. Kolchugina (eds.), Carbon Cycling in Boreal Forest and Sub-Arctic Ecosystems, Conference Proceedings, EPA/600/R-93/084, p. 109–124, Corvallis Oregon, 1993.

    Google Scholar 

  • Frolking, S., and P. Cril I, Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modeling, Global Biogeochem. Cycles, 8, 385–397, 1994.

    Article  Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser, Three dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13,033–13, 065, 1991.

    Google Scholar 

  • Funk, D. E., E. Pullman, K. Peterson, P. Crill, and W. D. Billings, Influence of water table on carbon dioxide, carbon monoxide and methane flux from taiga bog microcosms, Global Biogeochem. Cycles, 8, 271–278, 1994.

    Article  Google Scholar 

  • Giddings, L. and B. J. Choudhury, Observation of hydrological features with Nimbus-7 37 GHz data applied to South America, Int. J Remote Sens., 10, 1673–1686, 1989.

    Article  Google Scholar 

  • Glaser, P. H., The Ecology of Patterned Boreal Peatlands of Northern Minnesota: A community Profile, US Fish and Wildlife Service Biological Report 85 (7.14). US Department of the Interior, Washington DC, 98p, 1987.

    Google Scholar 

  • Glooschenko, W. A., N. T. Roulet, L. A. Barrie, H. I. Schiff, and H. G. McAdie, The Northern Wetlands Study (NOWES): An overview, J. Geophys. Res., 99, 1423–1428, 1994.

    Article  Google Scholar 

  • Glooschenko, W. A., N. T. Roulet, L. A. Barrie, H. I. Schiff, and H. McAdie, The Northern Wetlands Study (NOWES): An overview, J. Geophys. Res., 99, 1423–1428, 1994.

    Article  Google Scholar 

  • Gore, A. J. P. (ed.), Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor, Case Studies, 4B, Elsevier, New York, 479p, 1983b.

    Google Scholar 

  • Gore, A. J. P. (ed.), Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor, General Studies, 4A, Elsevier, New York, 440p, 1983a.

    Google Scholar 

  • Gorham, The role of northern peatlands in the carbon cycle, and probable responses to climatic warming, Ecol. Appl., 1, 182–195, 1991.

    Article  Google Scholar 

  • Hamilton, J. D., C. A. Kelly, J. W. M. Rudd, R. H. Hesslein, and N. T. Roulet, Flux to the atmosphere of CH, and CO, from wetland ponds on the Hudson Bay Lowlands (HBLs), J. Geophys. Res., 99, 1495–1510, 1994.

    Article  Google Scholar 

  • Hamilton, S., S. Sippel, and J. Melack, Oxygen depletion and carbon dioxide and methane production in water of the Pantanal wetland of Brazil, Biogeochemistry, 30, 115–141, 1995.

    Article  Google Scholar 

  • Hamilton, S., S. Sippel, and J. Melack, Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing, Arch. Hydrobiol., 137, 1–23, 1996.

    Google Scholar 

  • Hansen J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, and P. Stone, Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J. Geophys. Res., 93, 9341–9364, 1988.

    Article  Google Scholar 

  • Hansen, J., Mki. Sato, R. Ruedy, A. Lacis, K. Asamoah, K. Beckford, S. Borenstein, E. Brown, B. Cairns, B. Carlson, B. Curran, S. de Castro, L. Druyan, P. Etwarrow, T. Ferede, M. Fox, D. Gaffen, J. Glascoe, H. Gordon, S. Hollandsworth, X. Jiang, C. Johnson, N. Lawrence, J. Lean, J. Lerner, K. Lo, J. Logan, A. Luckett, M.P. McCormick, R. McPeters, R. Miller, P. Minnis, I. Ramberran, G. Russell, P. Russell, P. Stone, I. Tegen, S. Thomas, L. Thomason, A. Thompson, J. Wilder, R. Willson, and J. Zawodny, Forcings and chaos in interannual to decadal climate change, J. Geophys. Res., 102, 25, 679–25, 720, 1997.

    Google Scholar 

  • Harriss, R. C., and D. I. Sebacher, Methane flux in forested freshwater swamps of the southeastern United States, Geophys. Res. Lett., 8, 1002–1004, 1981.

    Article  Google Scholar 

  • Harriss, R. C., and S. Frolking, The sensitivity of methane emissions from northern freshwater wetlands to global warming. In P. Firth and S. G. Fisher (eds.), Climate Change and Freshwater Ecosystems, p. 48–67, Springer-Verlag, New York, 1992.

    Chapter  Google Scholar 

  • Harriss, R. C., D. I. Sebacher, and F. P. Day, Jr., Methane flux in the Great Dismal Swamp, Nature, 297, 673–674, 1982.

    Article  Google Scholar 

  • Harriss, R. C., E. Gorham, D. I. Sebacher, K. B. Bartlett, P. A. Flebbe, Methane flux from northern peatlands, Nature, 315, 652–653, 1985.

    Article  Google Scholar 

  • Harriss, R. C., S. C. Wofsy, M. Garstang, E. V. Browell, L. C. B. Molion, R. J. McNeal, J. M. Hoell, Jr, R. J. Bendura, S. M. Beck, R. L. Navarro, J. T. Riley, and R. L. Snell, The Amazon Boundary Layer Experiment (ABLE 2A): Dry season 1985, J. Geophys. Res., 93, 1351–1360, 1988a.

    Article  Google Scholar 

  • Harriss, R. C., D. I. Sebacher, K. B. Bartlett, D. S. Bartlett, P. M. Crill, Sources of atmospheric methane in the south Florida environment, Global Biogeochem. Cycles, 2, 231–243, 1988b.

    Article  Google Scholar 

  • Harriss, R. C., M. Garstang, S. C. Wofsy, S. M. Beck, R. J. Bendura, J. R. B. Coelho, J. W. Drewry, J. M. Hoell, Jr, P. A. Matson, R. J. McNeal, L. C. B. Molion, R. L. Navarro, V. Rabine, and R. L. Snell, The Amazon Boundary Layer Experiment (ABLE 2B): Wet season 1987, J. Geophys. Res., 95, 16, 721–16, 736, 1990.

    Google Scholar 

  • Harriss, R. C., K. B. Bartlett, S. Frolking, and P. M. Crill, Methane emissions from northern high-latitude wetlands, in R. S. Oremland (ed.), Biogeochemistry of Global Change: Radiatively Active Trace Gases, Chapman and Hall, New York, p. 449–486, 1993.

    Chapter  Google Scholar 

  • Harriss, R. C., S. C. Wofsy, J. M. Hoell, Jr., R. J. Bendura, J. W. Drewry, R. J. McNeal, D. Pierce, V. Rabine, And R. L. Snell, The Arctic Boundary Layer Expedition (ABLE-3B): July-August, 1990, J Geophys. Res., 99, 1635–1643, 1994.

    Article  Google Scholar 

  • Hein, R., P. J. Crutzen, and M. Heimann, An inverse modeling appoach to investigate the global atmospheric methane cycle, Global Geochem. Cycles, 11 (1), 43–76, 1997.

    Article  Google Scholar 

  • Hess, L, J. Melack, S. Filoso, and Y. Wang, Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar, IEEE Trans. Geosci. Rem. Sens., 33, 896–904, 1995.

    Article  Google Scholar 

  • Hess, L., J. Melack, and D. Simonett, Radar detection of flooding beneath the forest canopy: A review, Int. J. Rem. Sens., 11, 1313–1325, 1990.

    Article  Google Scholar 

  • Hogan, K. B., and R. C. Harriss, Comment on ‘A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992’ by E. J. Dlugokencky, et al., Geophys. Res. Lett., 23, 2761 - -2764, 1996.

    Article  Google Scholar 

  • Holzapfel-Pschorn, A. and W. Seiler, Methane emission during a cultivation period from an Italian rice paddy, J. Geophys. Res., 91, 11,803–11,814, 1986

    Google Scholar 

  • Houghton, J. T., L. G. Meira, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  • Justice, C. O., J. R. Townshend and B. J. Choudhury, Comparison of AVHRR and SMMR data for monitoring vegetation phenology on a continental scale, Int. J. Remote Sens., 10, 1607–1632, 1989.

    Article  Google Scholar 

  • Keller, M. M., and R. F. Stallard, Methane emission from bubbling in Gatun Lake, Panama, J. Geophys. Res., 99, 8307–8319, 1994.

    Article  Google Scholar 

  • Keller, M. M., Biological sources and sinks of methane in tropical habitats and tropical atmospheric chemistry, PhD thesis, Princeton Univ and Natl. Center Atmos. Res., 216p., 1990.

    Google Scholar 

  • Kerr, Y. H. and E. G. Njoku, On the use of passive microwave at 37 GHz in remote sensing of vegetation, Int. J. Remote Sens., 14, 1931–1943, 1993.

    Article  Google Scholar 

  • Khalil, M. A. K, and R. A. Rasmussen, Atmospheric methane: Trends over the last 10,000 years, Atmos. Environ., 21, 2445–2452, 1987.

    Article  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Causes of increasing methane: Depletion of hydroxyl radicals and the rise of emissions, Atmos. Environ., 19, 397–407, 1985.

    Article  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Secular trends of atmospheric methane (CH4). Chemosphere, 11, 877–883, 1982.

    Article  Google Scholar 

  • Khalil, M. A. K., and R. A. Rasmussen, Sources, sinks and seasonal cycles of atmospheric methane, J. Geophys. Res., 88, 5131–5144, 1983.

    Article  Google Scholar 

  • Khalil, M. A. K., R. A. Rasmussen, and M. J. Shearer, Trends of atmospheric methane in the 1960s and 1970s, J Geophys. Res., 94, 18, 279–18, 288, 1989.

    Google Scholar 

  • King, G. M., and W. J. Wiebe, Methane release from soils of a Georgia salt marsh, Geochim. Cosmochim. Acta, 42, 343–348, 1978.

    Article  Google Scholar 

  • Klinger, L. F., Introduction to special section on the Northern Wetlands Study and the Arctic Boundary Layer Expedition 3B: An international and interdisciplinary field campaign, J. Geophys. Res., 99, 1421–1422, 1994.

    Article  Google Scholar 

  • Klinger, L., P. R. Zimmerman, J. P. Greenberg, L. E. Heidt, and A. B. Guenther, Carbon trace gas fluxes along a successional gradient in the Hudson Bay Lowland, J. Geophys. Res., 99, 1469–1494, 1994.

    Article  Google Scholar 

  • Koyama, T., Biogeochemical studies on lake sediments and paddy soils in the production of atmospheric methane and hydrogen, in Y. Miyake and T. Koyama (eds.), Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry, p. 143177, Muruzen Co. Ltd., Tokyo, 1964.

    Google Scholar 

  • Koyama, T., Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen, J. Geophys. Res., 68, 3971–3973, 1963.

    Article  Google Scholar 

  • Lang, P. M., L. P. Steele, and R. C. Martin, Atmospheric methane data for the period 1986–1988 from the NOAA/CMDL global cooperative flask sampling network, Tech. Mem. ERL CMDL-2, Natl. Oceanic and Atmos. Admin., Boulder, Colorado, 1990b.

    Google Scholar 

  • Lang, P. M., L. P. Steele, R. C. Martin, and K. A. Masarie, Atmospheric methane data for the period 1983–1985 from the NOAA/CMDL global cooperative flask sampling network, Tech. Mem. ERL CMDL-1, Natl. Oceanic and Atmos. Admin., Boulder, Colorado, 1990a.

    Google Scholar 

  • Liblick, L. K., T. R. Moore, J. L. Bubier, and S. D. Robinson, Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada, Global Biogeochem. Cycles, 11, 485–494, 1997.

    Article  Google Scholar 

  • Livingston, G. P., and L. A. Morrissey, Methane emissions from Alaskan arctic tundra in response to climatic change. In G. Weller, C. L. Wilson, and B. A. B. Severin (eds.), Role ofPolar Regions in Global Change: Proceedings ofa Conference, p. 372–377, Geophysical Institute and Center for Global Change and Arctic System Research, University of Alaska Fairbanks, Fairbanks, Alaska, 1991.

    Google Scholar 

  • Matthews E., and I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 61–86, 1987.

    Article  Google Scholar 

  • Matthews, E., Wetlands. In M. A. K. Khalil (ed.) Atmospheric Methane: Sources, Sinks, and Role in Global Change, Berlin, Springer-Verlag, NATO ASI Series, I 13, p. 14–61, 1993.

    Google Scholar 

  • Mayer, E. W., D. R. Blake, S. C. Tyler, Y. Makide, D. S. Montague, and F. S. Rowland, Methane: Interhemispheric concentration gradient and atmospheric residence time, Proc. Natl. Acad. Sci. USA, 79, 1366–1370, 1982.

    Article  Google Scholar 

  • Melack, M. M., L. L. Hess, and S. Sippel, Remote sensing of lakes and floodplains in the Amazon basin, Rem. Sens. Rev., 10, 127–142, 1994.

    Article  Google Scholar 

  • Moore T., N. Roulet, and R. Knowles, Spatial and temporal variations of methane flux from subarctic/northern boreal fens, Global Biogeochem. Cycles, 4, 29–46, 1990.

    Article  Google Scholar 

  • Moore, T. R., A. Heyes, and N. T. Roulet, Methane emissions from wetlands, southern Hudson Bay lowland, J. Geophys. Res., 99, 1455–1467, 1994.

    Article  Google Scholar 

  • Moore, T. R., and N. T. Roulet, Methane flux: Water table relations in northern wetlands, Geophys. Res. Lett., 20, 587–590, 1993.

    Article  Google Scholar 

  • Moore, T. R., and R. Knowles, Methane and carbon dioxide evolution from subarctic fens, Can. J. Soil Sci., 67, 77–81, 1987.

    Article  Google Scholar 

  • Moore, T. R., and R. Knowles, Methane emissions from fen, bog and swamp peatlands in Quebec, Biogeochemistry, 11, 45–61, 1990.

    Article  Google Scholar 

  • Moore, T. R., and R. Knowles, The influence of water table levels on methane and carbon dioxide emissions from peatland soils, Can. J. Soil Sci., 69, 33–38, 1989.

    Google Scholar 

  • Morrissey, L. A., and G. P. Livingston, Methane emissions from Alaska arctic tundra: An assessment of local spatial variability, J. Geophys. Res., 97, 16, 661–16, 670, 1992.

    Google Scholar 

  • Morrissey, L. A., and R. A. Ennis, Vegetation mapping of the National Petroleum Reserve in Alaska using Landsat digital data, US Geol. Surv. Open File Report 81–315, US Geol. Surv., Reston, VA, 25p, 1981.

    Google Scholar 

  • Morrissey, L., G. Livingston, and S. Durden, Use of SAR in regional methane exchange studies, Int. J. Rem. Sens., 15, 1337–1342, 1994.

    Article  Google Scholar 

  • Morrissey, I., S. Durden, G. Livingston, J. Stearn, and L. Guild, Differentiating methane source areas in Arctic environments with multispectral ERS-1 SAR data, IEEE Trans. Geosci. Rem. Sens., 34, 667–673, 1996.

    Article  Google Scholar 

  • National Wetlands Working Group, Wetlands of Canada, Ecological Land Classification Series No. 24. Sustainable Development Branch, Environment Canada, Ottawa and Polyscience Publications, Montreal, 452p, 1988.

    Google Scholar 

  • Neale, C. M., M. J. McFarland and K. Chang, Land surface-type classification using microwave temperatures from the Special Sensor Microwave/Imager, IEEE Trans. Geosci. Remote Sens., 28, 829–838, 1990.

    Article  Google Scholar 

  • Oquist, M. G., B. H. Svensson, P. Groffman, M. Taylor, K. B. Bartlett, M. Boko, J. Brouwer, O. F. Canzini, C. B. Craft, J. Laine, D. Larsen, P. J. Martikainen, E. Matthews, W. Mullié, S. Page, C. J. Richardson, J. Rieley, N. Roulet, J. Silviola, and Y. Zhang, Non-Tidal Wetlands, in R. Watson, M. C. Zinyowera, and R. H. Moss (eds.), Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analyses, IPCC Second Assessment Report, Cambridge, Cambridge Univ. Press, p. 215–239, 1996.

    Google Scholar 

  • Ormsby, J. P., A. J. Blanchard, Detection of lowland flooding using active microwave systems, Photogram. Eng. Rem. Sens., 51, 317–328, 1985.

    Google Scholar 

  • Pearman, G. I., D. Etheridge, F. De Silva, and P. J. Fraser, Evidence of changing concentrations of atmospheric CO2, N20 and CH4 from air bubbles in Antarctic ice, Nature, 320, 248–250, 1986.

    Article  Google Scholar 

  • Potter, C. S., An ecosystem simulation model for methane production, Global Biogeochem. Cycles, 11, 495–506, 1997.

    Article  Google Scholar 

  • Prentice, I. C., S. T. Sykes, and W. Cramer, A simulation model for the transient effects of climate change on forest landscapes, Ecol. Modeling, 65, 51–70, 1993.

    Article  Google Scholar 

  • Prigent, C., W. B. Rossow, and E. Matthews, Microwave land surface emissivities estimated from SSM/I observations, J. Geophys. Res., 102, 21, 867–21, 890, 1997.

    Google Scholar 

  • Rasmussen, R. A., and M. A. K. Khalil, Atmospheric methane (CH4): Trends and seasonal cycles, J. Geophys. Res., 86, 9826–9832, 1981.

    Article  Google Scholar 

  • Rasmussen, R. A., and M. A. K. Khalil, Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends and interhemispheric gradient, J. Geophys. Res. 89, 11,599–11, 605, 1984.

    Google Scholar 

  • Reeburgh, W. S., J. Y. Kling, S. K. Regli, G. W. King, N. A. Auerbach, and D. A. Walker, A CH4 emission estimate for the Kuparuk River Basin, Alaska, J. Geophys. Res. 103(D22), 29,005–29, 013 1998.

    Google Scholar 

  • Ritter, J. A., J. D. W. Barrick, C. E. Watson, G. W. Sachse, G. L. Gregory, B. E. Anderson, M. A. Woemer, And J. E. Collins, Jr., AIRBORNE BOUNDARY LAYER Flux measurements of trace species over the Canadian boreal forests and northern wetland regions, J. Geophys. Res., 99, 1671–1685, 1994.

    Article  Google Scholar 

  • Ritter, J. A., J. D. W. Barrick, G. W. Sachse, G. L. Gregory, M. A. Woemer, C. E. Watson, G. F. Hill and J. E. Collins, Airborne flux measurements of trace species in an arctic boundary layer, J Geophys. Res., 97, 16, 601–16, 625, 1992.

    Google Scholar 

  • Rose, P. W., and P. C. Rosendahl, Classification of Landsat data for hydrologic application, Everglades National Park, Photogram. Eng. Rem. Sens., 49, 505–511, 1983.

    Google Scholar 

  • Roulet, N. T., A. Jano, C. A. Kelly, L. F. Klinger, T. R. Moore, R. Protz, J. A. Ritter, and W. R. Rouse, Role of the Hudson Bay lowland as a source of atmospheric methane, J. Geophys. Res., 99, 1439–1454, 1994.

    Article  Google Scholar 

  • Roulet, N. T., A. Jano, C. Kelly, L. Klinger, T. R. Moore, R. Protz R, J. Ritter, and W. R. Rouse, The Hudson Bay Lowland as a source of atmospheric methane, J. Geophys. Res., 99, 1439–1454, 1993.

    Article  Google Scholar 

  • Roulet, N. T., R. Ash, and T. R. Moore, Low boreal wetlands as a source of atmospheric methane, J. Geophys. Res., 97, 3739–3749, 1992a.

    Article  Google Scholar 

  • Roulet, N. T., T. Moore, J. Bubier, and P. LaFleur, Northern fens: Methane flux and climatic change, Tellus, 44B, 100–105, 1992b.

    Google Scholar 

  • Running, S. W., T. R. Loveland, and L. L. Pierce, A vegetation classification logic based in remote sensing for use in global biogeochemical models, Ambio, 23, 77–81, 1994.

    Google Scholar 

  • Sahagian, D., and J. Melack (Eds.), Global Wetland Distribution and Functional Characterization: Trace Gases and the Hydrologic Cycle, Wetlands Workshop Report, IGBP GAIM-DIS-BAHC-IGAC-LUCC Workshop, Santa Barbara, CA, May 1996.

    Google Scholar 

  • Schimel, J. P., Plant transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, 28, 183–200, 1995.

    Article  Google Scholar 

  • Sebacher, D. I., R. C. Harriss, K. B. Bartlett, Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual., 14, 40–46, 1985.

    Article  Google Scholar 

  • Sebacher, D. I., R. C. Harriss, K. B. Bartlett, S. M. Sebacher, and S. S. Grice, Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh, Tellus, 38B, 1–10, 1986.

    Google Scholar 

  • Seiler, W., and R. Conrad, Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N2O, in R. E. Dickinson (ed.), The Geophysiology of Amazonia: Vegetation and Climate Interactions, p 133, John Wiley, New York, 1987

    Google Scholar 

  • Seiler, W., Contribution of biological processes to the global budget of CH4 in the atmosphere, in M. Klug and C. Reddy (eds.), Current Perspectives in Microbial Ecology, p. 468, Amer. Soc. Microbiol., Washington, D. C., 1984.

    Google Scholar 

  • Shannon, R. D., and J. R. White, A three-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, 27, 35–60, 1994.

    Article  Google Scholar 

  • Sippel, S., S. Hamilton, and J. Melack, Determination of inundation area in the Amazon River floodplain using SMMR 27 GHz polarization difference, Rem. Sens. Env., 48, 70–76, 1994.

    Article  Google Scholar 

  • Stauffer B, E. Lochbronner, H. Oeschger, and J. Schwander, Methane concentration in the glacial atmosphere was only half that of the pre-industrial Holocene, Nature, 332, 812–814, 1988.

    Article  Google Scholar 

  • Stauffer, B., F. Fischer, A. Neftel, and H. Oeschger, Increase of atmospheric methane recorded in Antarctic ice core, Science, 229, 1386–1388, 1985.

    Article  Google Scholar 

  • Steele, L. P., P. J. Fraser, R. A. Rasmussen, M. A. K. Khalil, T. J. Conway, A. J. Crawford, R. H. Gammon, K. A. Masarie, K. W. Thoning, The global distribution of methane in the troposphere, J. Atmos. Chem., 5, 125–171, 1987.

    Article  Google Scholar 

  • Svensson, B. H., Carbon dioxide and methane fluxes from ombrotrophic parts of a subarctic mire, Ecol. Bull. (Stockholm), 30, 235–250, 1980.

    Google Scholar 

  • Svensson, B. H., Methane production in tundra peat. In H. G. Schlegel, G. Gottschalk, and N. Pfennig (eds.), Microbial Production and Utilization of Gases (H2, CH4, CO), p 135, Gottingen, 1976.

    Google Scholar 

  • Svensson, B. H., T. Rosswall, In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire, Oikos, 43, 341–350, 1984.

    Google Scholar 

  • Tathy J.-P., B. Cros, R. A. Delmas, A. Marenco, J. Servant, M/ Labat, Methane emission from flooded forest in Central Africa, J. Geophys. Res., 97, 6159–6168, 1992.

    Article  Google Scholar 

  • Tucker, C. J., Comparing SMMR and AVHRR data for drought monitoring, Int. J. Remote Sens., 10, 1663–1672, 1989.

    Article  Google Scholar 

  • Twenhofel, W. H., Principles of Sedimentation, McGraw-Hill, New York, 1926, 1951. UNESCO, International Classification and Mapping of Vegetation, UNESCO, Paris, 93p, 1973.

    Google Scholar 

  • Valentine, D., E. Holland, and D. Schimel, Ecosystem and physiological controls over methane production in northern wetlands, J. Geophys. Res., 99, 1563–1571, 1994.

    Article  Google Scholar 

  • Walker, D. A., W. Acevedo, K. R. Everett, L. Gaydos, J. Brown, P. J. Webber, Landsatassisted environmental mapping in the Arctic National Wildlife Refuge, Alaska, US Cold Regions Res. Eng. Lab., Hanover, NH, 1982.

    Google Scholar 

  • Walter, B., M. Heimann, R. Shannon, and J. White, A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 23, 3731–3734, 1996.

    Article  Google Scholar 

  • Wassmann, R., U. G. Thein, M. J. Whiticar, H. Rennenberg, W. Seiler, and W. J. Junk, Methane emissions from the Amazon floodplain: Characterization of production and transport, Global Biogeochem. Cycles, 6, 3–13, 1992.

    Article  Google Scholar 

  • Whalen, S. C., and W. S. Reeburgh, A methane flux transect along the trans-Alaska pipeline haul road, Tellus, 42B, 237–249, 1990.

    Article  Google Scholar 

  • Whalen, S. C., and W. S. Reeburgh, Interannual variations in tundra methane emission: A 4-year time-series at fixed sites, Global Biogeochem. Cycles, 6, 139–159, 1992.

    Article  Google Scholar 

  • Whalen, S. C., W. S. Reeburgh, A methane flux time series for tundra environments, Global Biogeochem. Cycles, 2, 399–409, 1988.

    Article  Google Scholar 

  • Whiting, G. J., and J. P. Chanton, Plant-dependent CH, emission in a subarctic Canadian fen, Global Biogeochem. Cycles, 6, 225–231, 1992.

    Article  Google Scholar 

  • Whiting, G. J., and J. P. Chanton, Primary production control of methane emission from wetlands, Nature, 364, 794–795, 1993.

    Article  Google Scholar 

  • Whiting, G. J., J. P. Chanton, D. S. Bartlett, J. D. Happell, Relationships between CH, emission, biomass and CO, exchange in a subtropical grassland, J. Geophys. Res., 96, 13,067–13, 071, 1991.

    Google Scholar 

  • Wilson, J. O., P. M. Crill, K. B. Bartlett, D. I. Sebacher, R. C. Harriss, and R. L. Sass, Seasonal variation of methane emissions from a temperate swamp, Biogeochemistry, 8, 55–71, 1989.

    Article  Google Scholar 

  • Zoltai, S. C., and F. C. Pollett, Wetlands in Canada: Their classification, distribution and use, in A. J. P. Gore (ed.), Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor, Case Studies, 4B, p 245–268, Elsevier, New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthews, E. (2000). Wetlands. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics