Skip to main content

Atmospheric Methane: An Introduction

  • Chapter
Atmospheric Methane

Abstract

Methane is a greenhouse gas thought to be second only to CO2 as an agent of future global warming. The increasing trend is the single most important reason for the current interest in methane It is the foundation for much of the research on methane during the past decade, particularly on the global budget, which is tied directly to explaining why it is increasing. Figure 1 (a-f) shows the concentration and trends of methane over the recent decades and back to a thousand years. I want to describe briefly the progress towards the understanding of global budgets and trends, and to provide a guide to the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chameides, W.L., S.C. Liu, R.J. Cicerone. 1977. Possible variations in atmospheric methane. J. Geophys. Res., 82:1, 795-1, 798.

    Google Scholar 

  • Ehhalt, D.H. 1974. The atmospheric cycle of methane. Tellus, 26:58-70.

    Google Scholar 

  • Glueckauf, E. 1951. The composition of atmospheric air. In: Compendium of Meteorology (Thomas F. Malone, ed.), American Meteorological Society, Boston, U.S.A., pp 3-9. Khalil, M.A.K., R.A. Rasmussen. 1982. Secular trend of atmospheric methane. Chemosphere, 11:877-883.

    Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1985. Causes of increasing methane: Depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19: 397 - 407.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1990. Atmospheric methane: Recent global trends. Environ. Sci. Technol., 24: 549 - 553.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, M.J. Shearer. 1989. Trends of atmospheric methane during the 1960s and 1970s. J. Geophys. Res., 94:18, 279-18, 288.

    Google Scholar 

  • Khalil, M.A.K., M.J. Shearer, and R.A. Rasmussen. 1996. Atmospheric Methane over the Last Century. World Resource Review, 8: 481-492. 4 Khalil

    Google Scholar 

  • Krol, M., P.J. van Leeuwen and J.Leilieveld. 1998. Global OH trend inferred from methyl chloroform measurements. J. Geophys. Res. 103: 10697 - 10712.

    Article  Google Scholar 

  • Madronich, S., C. Granier. 1992. Impact of recent total ozone changes on tropospheric ozonephotodissociation, hydroxyl radicals and methane trends. Geophys. Res. Lett., 19:465-467.

    Google Scholar 

  • Migeotte, M.V. 1948a. Spectroscopic evidence of methane in the Earths atmosphere. Phys. Rev., 73: 519 - 520.

    Article  Google Scholar 

  • Migeotte, M.V. 1 948b. Methane in the Earths atmosphere. J. Astrophys., 107:400-403. Pinto, J.P., M.A.K. Khalil. 1991. The stability of tropospheric OH during ice ages, interglacial epochs and modern times. Tellus, 43B: 347 - 352.

    Google Scholar 

  • Prinn, R.G., et al. 1992. Global average concentration and trend of hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990. J. Geophys. Res., 97:2, 445-2, 461.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1981. Atmospheric methane: Trends and seasonal cycles. J. Geophys. Res., 86:9, 826 - 9, 832.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil, S.D. Hoyt. 1982. Methane and carbon monoxide in snow. JAPCA, 32:176-178.

    Google Scholar 

  • Robbins, R.C., L.A. Cavanagh, L.J. Salas. 1973. Analysis of ancient atmospheres. J. Geophys. Res., 78:5, 341-5, 344.

    Google Scholar 

  • Singer, S.F. 1971. Stratospheric water vapor increase due to human activities. Nature, 233: 543 - 545.

    Article  Google Scholar 

  • Steele, L.P., et al. 1992. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 358:313-316.

    Google Scholar 

  • Sze, N.D. 1977. Anthropogenic CO emissions: Implications for the atmospheric CO-OH-CH, cycle. Nature, 195: 673 - 675.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khalil, M.A.K. (2000). Atmospheric Methane: An Introduction. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics