Skip to main content

Novel Processing Technology for Macroelectronics

  • Chapter
Technology and Applications of Amorphous Silicon

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 37))

Abstract

Large-area electronic circuits on thin foil substrates can be made with techniques adapted from conventional printing. Conventional printing can provide a resolution and an overlay registration of 10 μm and ±5 μm, respectively, which will allow making thin-film transistors (TFTs) at densities above 10 000 per square centimeter. An early example is the use of laser-printed toner etch masks for the fabrication of amorphous silicon TFTs. Patterned devices can be made by direct printing, as demonstrated by the jet printing of the active polymer for organic light-emitting diodes (OLEDs). Paper-thin foils of glass, steel, and polyimide can serve as substrates for making TFTs with characteristics comparable to those made on glass plates. Materials options for thin foil substrates are described. A study of the mechanics of films on stiff and compliant foil substrates shows that particularly rugged and flexible device structures can be made when the foils are very thin. Integrating OLEDs with thin-film transistors on steel foil substrates provides an early example of 3-D integrated components for macroelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Kaneko, Displays 14 (1993) 125–130.

    Google Scholar 

  2. E. Kaneko, in Thin Film Transistor Technologies III, Electrochemical Society PV96–23, p. 8 (1997).

    Google Scholar 

  3. D.M. de Leeuw, P.W.M. Blom, C.M. Hart, C.M.J. Mutsaers, C.J. Drury, M. Matters and H. Termeer, Tech. Digest IEDM 1997, p331. IEEE, New York 1997.

    Google Scholar 

  4. C.J. Drury, C.M.J. Mutsaers, C.M. Hart, M. Matters, D.M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998).

    Article  Google Scholar 

  5. J. Yang, A. Banerjee, T. Datierter, S. Sugiyama, and S. Guha, Conf. Record 26th IEEE PVSC, IEEE, New York (1997), p 563.

    Google Scholar 

  6. D.E. Carlson, R.R. Arya, M. Bennett, L.-F. Chen, K. Jansen, Y.-M. Li, J. Newton, K. Rajan, R. Romero, D. Talenti, E. Tweseme, F. Willing and L. Yang, Conf. Record 25th IEEE PVSC, IEEE, New York (1996), p 1023.

    Google Scholar 

  7. H. Gleskova, S. Wagner, and D.S. Shen, J. Non-Cryst. Solids 227230, 1217 (1998).

    Google Scholar 

  8. H. Gleskova, S. Wagner, and D.S. Shen, IEEE Electron Devices Letters 16, 418 (1995).

    Article  Google Scholar 

  9. Pocket Pal, 16th ed., International Paper Company, Memphis, Tennessee (1995).

    Google Scholar 

  10. The values for λ and δ are a consensus on the capability of high-quality printing equipment. Agreement on the feasibility of λ = 10 μm is better than on δ = ±5 μm. The value for δ is considered less certain, because the two alternatives for obtaining registration, mechanical or by optical alignment, are so different. The consensus values were reached in discussions with experts in three laboratories of the printing industry: Mr. Shinichi Hikosaka and colleagues of the Central Research Institute of Dainippon Printing Co., Ltd., Dr. Kaneki Yoshida and colleagues of the Technical Research Institute of Toppan Printing Co., Ltd., and of Mr. Russell Fling and colleagues of the Technical Center of R.R. Donnelley Printing Co.

    Google Scholar 

  11. We thank the researchers of Dai-Nippon and Toppan for discussions of alignment techniques.

    Google Scholar 

  12. A point made by Mr. Russell Fling of R.R. Donnelley.

    Google Scholar 

  13. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Science 272, 85 (1996).

    Article  Google Scholar 

  14. H. Gleskova, R. Könenkamp, S. Wagner, and D.S. Shen, IEEE Electron Devices Lett. 17, 264 (1996).

    Article  Google Scholar 

  15. H. Gleskova, S. Wagner, and D.S. Shen, MRS Symp. Proc. 467, 869 (1997).

    Article  Google Scholar 

  16. B. Green, “A New Way to Make PC Boards,” Electronics Now (November 1997), p. 52.

    Google Scholar 

  17. For introductions to xerography and laser printing, see L.B. Schein, “Electrophotography and Development Physics”, Springer, New York (1992), and

    Book  Google Scholar 

  18. R.M. Schaffert, “Electrophotography,” Halstead Press, New York (1975).

    Google Scholar 

  19. H. Gleskova and S. Wagner, unpublished results.

    Google Scholar 

  20. H. Gleskova, S. Wagner, and D.S. Shen, Proc. AMLCDs ’95, Lehigh University, 25–26 (Sep. 1995), p 16.

    Google Scholar 

  21. E.Y. Ma and S. Wagner, MRS Symp. Proc. 508, 18 (1998).

    Article  Google Scholar 

  22. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Applied Physics Letters 72, 519 (1998).

    Article  Google Scholar 

  23. T.R. Hebner and J.C. Sturm, Applied Physics Letters 73, 1775 (1998).

    Article  Google Scholar 

  24. D.M. Moffat, MRS Symp. Proc. 377, 871 (1995).

    Article  Google Scholar 

  25. S.D. Theiss and S. Wagner, MRS Symp. Proc. 424, 65 (1996).

    Article  Google Scholar 

  26. E.Y. Ma, Ph.D. thesis, Princeton University (1998).

    Google Scholar 

  27. S.D. Theiss, C.C. Wu, M. Lu, J.C. Sturm and S. Wagner, MRS Symp. Proc. 471, 26 (1997).

    Article  Google Scholar 

  28. E.Y. Ma, S.D. Theiss, M.H. Lu, C.C. Wu, J.C. Sturm and S. Wagner, IEEE (1997) Internat. Electron Devices Meeting Tech Digest p 535.

    Google Scholar 

  29. T. Dragone, S. Wagner and T.D. Moustakas, Tech Digest PVSEC-1, Kobe, Japan (Nov 13–16, 1984); p 711.

    Google Scholar 

  30. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York (1970).

    MATH  Google Scholar 

  31. H. Gleskova, S. Wagner, and Z. Suo, MRS Symp Proc. 508, 73 (1998).

    Article  Google Scholar 

  32. C.C. Wu, S.D. Theiss, G. Gu, M.H. Lu, J.C. Sturm, S. Wagner and S.R. Forrest, Society for Information Display, Intern. Symp. Digest, Vol. XXVIII, SID, Santa Ana, CA (1997), 67.

    Google Scholar 

  33. C.C. Wu, S.D. Theiss, G. Gu, M.H. Lu, J.C. Sturm, S. Wagner and S.R. Forrest, IEEE Electron Devices Lett. 18, 609 (1997).

    Article  Google Scholar 

  34. Z. Suo, E.Y. Ma, H. Gleskova and S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, S., Gleskova, H., Sturm, J.C., Suo, Z. (2000). Novel Processing Technology for Macroelectronics. In: Street, R.A. (eds) Technology and Applications of Amorphous Silicon. Springer Series in Materials Science, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04141-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04141-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08499-7

  • Online ISBN: 978-3-662-04141-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics