Skip to main content

Laser Crystallization for Polycrystalline Silicon Device Applications

  • Chapter
Technology and Applications of Amorphous Silicon

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 37))

Abstract

Pulsed excimer-laser processing of amorphous silicon on non-crystalline substrates is an important processing technology for large-area polysilicon electronics, such as flat-panel displays and two-dimensional imaging arrays. The technique allows for the creation of CMOS polysilicon on glass substrates, the integration of polysilicon silicon and amorphous devices on the same glass substrate, and the fabrication of self-aligned amorphous silicon thin-film transistors via laser doping. Materials studies show that laser-crystallized polysilicon contains larger grains with fewer defects than polysilicon prepared by other techniques and exhibits large lateral grain growth in a narrow range of excimer laser energy density, with a corresponding peak in the electron mobility. This interesting materials phenomenon provides the opportunity to create excellent polysilicon for device applications, using an appropriate region of parameter space to avoid a non-uniform grain-size distribution and large surface roughness. Also, laser-processing enhancements, such as laser doping and fabrication of self-aligned transistors, provide additional tools to fabricate unique devices. These materials and device processing issues are described, and the device results are presented. For the devices, emphasis is placed on homogeneity and stability as well as on important performance parameters, such as thin-film transistor mobility and leakage currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Sameshima and S. Usui, Mat. Res. Soc. Symp. Proc. 71, 435 (1986).

    Article  Google Scholar 

  2. T. Noguchi, H. Hayashi, and T. Ohshima, Mat. Res. Soc. Symp. Proc. 106, 293 (1988).

    Article  Google Scholar 

  3. K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, IEEE Trans. Electron Devices 36, 2868 (1989).

    Article  Google Scholar 

  4. I.-W. Wu, Mat. Res. Soc. Proc. 182, 107 (1990);

    Article  Google Scholar 

  5. I-W. Wu, A. G. Lewis, T-Y. Huang, and A. Chiang, Proc. of Society for Information Display 31, 311 (1990).

    Google Scholar 

  6. K. Winer, G. B. Anderson, S. E. Ready, R. Z. Bachrach, R. I. Johnson, F.A. Ponce, and J. B. Boyce, Appl. Phys. Lett. 57, 2222 (1990).

    Article  Google Scholar 

  7. K. Shimizu, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., 29, L1775 (1990).

    Article  Google Scholar 

  8. H. Kuriyama, et al, Jpn. J. Appl. Phys. 31, 4550 (1992).

    Article  Google Scholar 

  9. S. Chen, J. B. Boyce, I-W. Wu, A. Chiang, R. I. Johnson, G. B. Anderson, and S. E. Ready, SID Proc. Of Active Matrix Liquid Crystal Displays Symp., p. 26 (1993).

    Google Scholar 

  10. I. Asai, N. Kato, M. Fuse, and T. Hamano, Jpn. J. Appl. Phys. 32, 474 (1993).

    Article  Google Scholar 

  11. E. Forgarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. de Unamuno, and E. L. Matthe, Appl. Surface Science 69, 231 (1993).

    Article  Google Scholar 

  12. S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Growers, IEEE Trans. Electron Devices 40, 407 (1993).

    Article  Google Scholar 

  13. H. Tanabe, K. Sera, K. I. Nakamura, K. Hirata, K. Yuda, and F. Okumura, Mat. Res. Soc. Symp. Proc, 677, 305 (1994).

    Google Scholar 

  14. S. D. Brotherton, Semiconductor Sci. Tech., 10, 721 (1995).

    Article  Google Scholar 

  15. 3.14 T. J. King, AMLCDs, 80 (1995).

    Google Scholar 

  16. J. B. Boyce, P. Mei, D. K. Fork, G. B. Anderson, and R. I. Johnson, Mat. Res. Soc. Proc. 403, 305 (1996).

    Article  Google Scholar 

  17. J. S. Im and R. S. Sposili, MRS Bulletin 21, 39 (1996).

    Google Scholar 

  18. I-W. Wu, Mat. Res. Soc. Proc. 471, 125 (1997).

    Article  Google Scholar 

  19. J. B. Boyce, P. Mei, R. T. Fulks, and J. Ho, Phys. Stat. Sol. 166, 729 (1998).

    Article  Google Scholar 

  20. P. Mei, G. B. Anderson, J. B. Boyce, D. K. Fork, R. Lujan, Electrochem. Soc. Proc, 96–23, 51 (1996).

    Google Scholar 

  21. M. Matsumara, Phys. Stat. Sol. 166, 715 (1998).

    Article  Google Scholar 

  22. G. K. Giust, T. W. Sigmon, J. B. Boyce, and J. Ho, IEEE Electron Devices Letters, 20, 77 (1999).

    Article  Google Scholar 

  23. 3.22 Corning Product Specification, Display Grade Product, Glass 1737F; Corning Inc., Corning, NY.

    Google Scholar 

  24. T. Kamins, Polysilicon for Integrated Circuit Applications, Kluwer Academic Publications, New York (1988).

    Book  Google Scholar 

  25. 3.24 Polycrystalline Semiconductors: Physical Properties and Applications, Ed. G. Harbeke, Springer-Verlag, Berlin (1985).

    Google Scholar 

  26. 3.25 See, for example, references 3.7, 3.9, 3.15, 3.18, and references contained therein.

    Google Scholar 

  27. See, for example, N. D. Young, D. J. McCulloch, and R. M. Bunn, Digest of Technical Papers, AM-LCD 97, 47 (1997).

    Google Scholar 

  28. A. T. Voutsas and M. K. Hatalis, J Electrochem. Soc. 139, 2659 (1992).

    Article  Google Scholar 

  29. A. Mimura, N Konishi, K. Ono, J.-I. Ohwada, Y. Hosokawa, Y. A. Ono, T. Suzuki, K. Miyata, and H. Kawakami, IEEE Trans. Electron Devices 36, 351 (1989).

    Article  Google Scholar 

  30. N. Yamauchi and R. Reif, J. Appl. Phys. 75, 3235 (1994);

    Article  Google Scholar 

  31. I-W. Wu, A. Chiang, M. Fuse, L. Ovecoglu. and T. Y. Huang, J. Appl. Phys. 65, 4036 (1989).

    Article  Google Scholar 

  32. R. Z. Bachrach, K. Winer, J. B. Boyce, S. E. Ready, R. I. Johnson, and G. B. Anderson, J. Electron. Mat. 19, 241 (1990).

    Article  Google Scholar 

  33. R. Z. Bachrach, J. B. Boyce, S. E. Ready, and G. B. Anderson, Polycrys-talline Semiconductors II, Eds. J. H. Werner and H. P. Strunk, Springer-Verlag, Berlin (1991), pp. 330–341.

    Chapter  Google Scholar 

  34. J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975).

    Article  Google Scholar 

  35. T. I. Kamins and P. J. Marcoux, IEEE Device Letters 1, 159 (1980):

    Article  Google Scholar 

  36. M. J. Thompson, J. Non-Cryst. Solids 137&138, 1209 (1991).

    Article  Google Scholar 

  37. N. H. Nickel, G. B. Anderson, and R. I. Johnson, Phys. Rev. C. 56, 12065 (1997).

    Google Scholar 

  38. N. H. Nickel, N. M. Johnson, and W. B. Jackson, Appl. Phys. Lett. 62, 3285 (1993).

    Article  Google Scholar 

  39. J. M. Poate and J. W. Mayer, Laser Annealing of Semiconductors, Academic Press, New York (1982).

    Google Scholar 

  40. 3.37 Pulsed Laser Processing of Semiconductors, Vol 23 in Semiconductors and Semimetals, Eds. R. F. Wood, C. W. White, and R. T. Young, Academic Press, New York (1984).

    Google Scholar 

  41. 3.38 See, for example, references 3.10, 3.13, 3.15, 3.17 and references contained therein.

    Google Scholar 

  42. S. E. Ready, J. B. Boyce, R. Z. Bachrach, R. I. Johnson, K. Winer, G. B. Anderson, and C. Tsai, Mat. Res. Soc. Proc. 149, 345 (1989).

    Article  Google Scholar 

  43. R. I. Johnson, G. B. Anderson, S. E. Ready, D. K. Fork, and J. B. Boyce, Mat. Res. Soc. Proc. 258, 123 (1992).

    Article  Google Scholar 

  44. R. I. Johnson, G. B. Anderson, J. B. Boyce, D. K. Fork, P. Mei, S. E. Ready, and S. Chen, Mat. Res. Soc. Proc. 297, 533 (1993).

    Article  Google Scholar 

  45. 3.42 LIMP, for Laser Induced Melting Predictions, is the Harvard simulation program provided by Jeffrey West. The original was written by M. O. Thompson and enhanced by J. West, P. M. Smith and D. Hoglund.

    Google Scholar 

  46. J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett. 63, 1969 (1993).

    Article  Google Scholar 

  47. J. S. Im and H. J. Kim, Appl. Phys. Lett. 64, 2303 (1994).

    Article  Google Scholar 

  48. J. B. Boyce, G. B. Anderson, D. K. Fork, R. I. Johnson, P. Mei, S. E. Ready, Mat. Res. Soc. Proc. 321, 671 (1994).

    Article  Google Scholar 

  49. P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, S. E. Ready, D. K. Fork, and D. L. Smith, Mat. Res. Soc. Proc. 297, 151 (1993).

    Article  Google Scholar 

  50. P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, J. Appl. Phys. 76, 3194 (1994).

    Article  Google Scholar 

  51. P. Mei, J. B. Boyce, D. K. Fork, M. Hack, R. A. Lujan and S. E. Ready, Proc. 4th Int. Conf. Solid State and Integrated-Circuit Technology, 76 (5), 3194 (1994).

    Google Scholar 

  52. D. C. Fork, G. C. Anderson, J. B. Boyce, R. I. Johnson, and P. Mei, Appl. Phys. Lett., 68, 2138 (1996).

    Article  Google Scholar 

  53. M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, and N. G. Chew, Phys. Rev. Lett. 52, 2360 (1984).

    Article  Google Scholar 

  54. J. Narayan and C. W. White, Appl. Phys. Lett. 44, 35 (1984).

    Article  Google Scholar 

  55. D. H. Lowndes, G. E. Jellison, S. J. Pennycook, S. P. Withrow, and D. M. Mashburn, Appl. Phys. Lett., 48, 1389 (1986).

    Article  Google Scholar 

  56. S. E. Ready, J. H. Roh, J. B. Boyce, and G. B. Anderson, Mat. Res. Soc. Proc. 258, 111 (1992).

    Article  Google Scholar 

  57. S. R. Stiffler, M. O. Thompson, and P. S. Peercy, Phys. Rev, C. 43, 9851 (1991)

    Google Scholar 

  58. A. G. Cullis, H. C. Weber, N. G. Chew, J. M. Poate, and P. Baeri, Phys. Rev. Lett. 49, 219 (1982).

    Article  Google Scholar 

  59. T. Sameshima and S. Usui, J. Appl. Phys. 74, 6592 (1993).

    Article  Google Scholar 

  60. G. B. Anderson, J. B. Boyce, D. K. Fork, R. I. Johnson, P. Mei, and S. E. Ready, Mat. Res. Soc. Proc, 343, 709 (1994).

    Article  Google Scholar 

  61. D. J. McCulloch and S. D. Brotherton, Appl. Phys. Lett. 66, 2060 (1995).

    Article  Google Scholar 

  62. L. L. Kazmerski, Electrical Properties of Polycrystalline Semiconductor Thin Films, Chap. 3 in Polycrystalline and Amorphous Thin Films and Devices, L. L. Kazmerski, Ed., Academic Press, New York (1980).

    Google Scholar 

  63. P. G. Carey and T. W. Sigmon, Appl. Surface Sci., 43 325 (1989).

    Article  Google Scholar 

  64. C. H. Weiner, P. G. Carey, A. M. McCarthy, and C. W. Sigmon, IEEE Elec. Dev. Lett., 13, 369 (1992).

    Article  Google Scholar 

  65. K. H. Weiner, P. G. Carey, A. M. McCarthy, and T. W. Sigmon, Microelectronic Eng, 20 107 (1993).

    Article  Google Scholar 

  66. C. Sakoda, C. Kim, and M. Matsumura, Mat. Res. Soc. Proc, 345, 59 (1994).

    Article  Google Scholar 

  67. J. B. Boyce, G. B. Anderson, P. G. Carey, D. K. Fork, R. I. Johnson, P. Mei, S. E. Ready and P. M. Smith, Mat. Res. Soc Proc. 358, 909 (1995).

    Article  Google Scholar 

  68. P. Mei, J. B. Boyce, D. K. Fork, M. Hack, R. Lujan, and S. E. Ready, Proc. of the 4th Intl. Conf. On Solid-State and Integrated Circuit Tech., p. 721 (1995)

    Book  Google Scholar 

  69. K. H. Weiner, Fabrication of Thin Base Bipolar Transistors Using Pulsed UV Laser Processing, PhD Thesis, Stanford University, June (1989).

    Google Scholar 

  70. 3.67 Figure 3.14 is from Fig. 4.2 of reference 3.66 where the laser energy density has been estimated from the melt depth versus laser fluence data of this reference’s Fig. 4.8.

    Google Scholar 

  71. H. Kumomi and T. Yonehara, Mat. Res. Soc. Symp. Proc, 202, 645 (1990).

    Article  Google Scholar 

  72. H. J. Kim and J. S. Im, Mat. Res. Soc. Symp. Proc, 397, 401 (1995).

    Article  Google Scholar 

  73. D. H. Choi, E. Sadayuki, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., 33, Pt. 1, 70 (1993).

    Article  Google Scholar 

  74. A. B. Y. Chan, C. T. Nguyen, P. K. Ko, M. Wong, A. Kumar, J. Sin, and S. S. Wong, IEEE Electron Dev, Lett., 17, 518 (1996).

    Article  Google Scholar 

  75. 3.72 I-Wei Wu, A. G. Lewis, T. Y. Huang, W. B. Jackson, and A, Chiang, IEEE, IEDM 867 (1990).

    Google Scholar 

  76. S. D. Brotherton, J. R. Ayres, and M. J. Trainor, J. Appl. Phys. 79, 895 (1996).

    Article  Google Scholar 

  77. M. S. Shur, M. D. Jacunski, H. C. Slade, and M. Hack, J. SID, 3/4, 223 (1995).

    Google Scholar 

  78. 3.75 M. Hack, I-Wei Wu, T. J. King and A. G. Lewis, IEEE IEDM, 385 (1993).

    Google Scholar 

  79. M. Rodder, IEEE Electron Dev, Lett., 6, 570 (1985).

    Article  Google Scholar 

  80. G. P. Pollack, IEEE Electron Dev, Lett., 5, 468 (1984).

    Article  Google Scholar 

  81. H. N. Chern, C. L. Lee, and C. F. Lei, IEEE Tran. Electron Dev., 41, 698 (1994).

    Article  Google Scholar 

  82. H. C. Cheng, F. S. Wang, C. Y. Huang, IEEE Tran. Electron Dev., 44, 64 (1997).

    Article  Google Scholar 

  83. S. Seki, O. Kogure, and B. Tsujiyama, IEEE Electron Dev, Lett., 8, 425 (1987).

    Article  Google Scholar 

  84. I-Wei Wu, W. B. Jackson, T. Huang, A. G. Lewis, and A. Chiang, IEEE Electron Dev, Lett., 11, 167 (1990).

    Article  Google Scholar 

  85. M. Hack, A. G. Lewis, and I-Wei. Wu, IEEE Tran. Electron Dev., 40, 890 (1993).

    Article  Google Scholar 

  86. N. D. Young, IEEE Tran. Electron Dev., 43, 450 (1996).

    Article  Google Scholar 

  87. V. Suntharalingam and S. J. Fonash, Appl. Phys. Lett. 68, 1400 (1996).

    Article  Google Scholar 

  88. M. Hack, P. Mei, R. Lujan and A. G. Lewis, J. Non-Crystalline Solids, 164–166, 727 (1993).

    Article  Google Scholar 

  89. M. J. Powell, Insulating Films on Semiconductors, J. F. Verweij and D. R. Wolters (editors), Elservier Science Publishers B. V. (North-Holland), p. 245 (1983)

    Google Scholar 

  90. T. Tanaka, H. Asuma, C. Ogawa, Y. Shinagawa, C. Ono, N. Konishi, International Electron Devices Meeting 1993. Technical Digest, 389 (1993).

    Google Scholar 

  91. W. B. Jackson, Phys. Rev. C., 41, 1059 and 10257 (1990).

    Google Scholar 

  92. T. Aoyama, K. Ogawa, Y. Mochizuki, and N. Konishi, Appl. Phys. Lett., 66, 3007 (1995).

    Article  Google Scholar 

  93. P. Mei, J. B. Boyce, M. Hack, R. Lujan, R. I. Johnson, G.B. Anderson, D.K. Fork, S.E. Ready, Appl. Phys. Lett., 64, 1132 (1994).

    Article  Google Scholar 

  94. M.J. Powell, S.C. Deane, I.D. French, J.R. Hughes, W.I. Milne, Philosophical Magazine C. (Physics of Condensed Matter, Electronic, Optical and Magnetic Properties), 63, 325 (1991).

    Google Scholar 

  95. P. Mei, J. B. Boyce, D.K. Fork, G.B. Anderson, J. Ho, M. Hack, R. Lujan, Mat. Res. Soc. Symp. Proc. 507, 3 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyce, J.B., Mei, P. (2000). Laser Crystallization for Polycrystalline Silicon Device Applications. In: Street, R.A. (eds) Technology and Applications of Amorphous Silicon. Springer Series in Materials Science, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04141-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04141-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08499-7

  • Online ISBN: 978-3-662-04141-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics