Rupture and Adherence of Elastic Solids

  • Daniel Maugis
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 130)

Abstract

If two solids were to be separated as a whole, all the bonds being broken simultaneously, the force needed would be proportional to the contact area, and the stress (corresponding to the peak of intermolecular forces) would be enormous, reaching the theoretical stress of the material. This is never the case. Separation starts at a defect, an interfacial crack then propagates, breaking in its displacement all the bonds one after another, like a zip fastener does. If one keeps in mind this comparison, one can see that the displacement of the point of application of the force is greatly amplified, and that force is less since the work done must be the same.

Keywords

Entropy Enthalpy Brittle Wharf Exter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Griffith: Phil. Trans. Roy. Soc. A 221, 163 (1920)CrossRefGoogle Scholar
  2. 2.
    G.R. Irwin, J.A. Kies: Welding Journal 31, Res. Suppl. 95 (1952)Google Scholar
  3. 3.
    G.R. Irwin: J. Appl. Mech. 24, 361 (1957)Google Scholar
  4. 4.
    H.B. Callen: Thermodynamics (Wiley, 1960)Google Scholar
  5. 5.
    S.J. Burns, J.C. Pollet, C. Lun Chow: Int. J. Fracture 14, 311 (1978)CrossRefGoogle Scholar
  6. 6.
    J.R Berry: J. Mech. Phys. Solids 8, 194 (1960)CrossRefGoogle Scholar
  7. 7.
    J.R. Rice: J. Mech. Phys. Solids 26, 61 (1978)CrossRefGoogle Scholar
  8. 8.
    A.A. Griffith: Proc. First Int. Congress of Appl. Mechanics (Delft 1924) pp. 55Google Scholar
  9. 9.
    LB. Obreimov: Proc. Roy. Soc. A 127, 290 (1930)CrossRefGoogle Scholar
  10. 10.
    F.C. Roesler: Proc. Phys. Soc. B 69, 981 (1956)CrossRefGoogle Scholar
  11. 11.
    E. Orowan: Trans. Inst. Eng. Shipbuilders Scotland 89, 165 (1945)Google Scholar
  12. 12.
    D. Maugis: Eng. Fracture Mech. 43, 217 (1992)CrossRefGoogle Scholar
  13. 13.
    A. Gilabert, P. Sibillot, D. Sornette, C. Vanneste, D. Maugis, S. Muttin: Eur. J. Mech. A/Solids 11, 65 (1992)Google Scholar
  14. 14.
    P.S. Theocaris, D. Pazis, B.D. Constantellos: Int. J. Fracture 30, 135 (1986)Google Scholar
  15. 15.
    G.R. Irwin: Fracture. Encyclopedia of Physics, vol. IV: Elasticity and Plasticity, ed. by Flügge (Springer, Berlin 1958) pp. 551–590Google Scholar
  16. 16.
    G.R. Irwin, J.A. Kies, H.L. Smith: ASTM Proc. 58, 640 (1958)Google Scholar
  17. 17.
    I.N. Sneddon: Proc. Roy. Soc. A 187, 229 (1946)CrossRefGoogle Scholar
  18. 18.
    H.W. Westergaard: Trans. ASME 61, A49 (1939)Google Scholar
  19. 19.
    M.L. Williams: J. Appl. Mech. 24, 109 (1957)Google Scholar
  20. 20.
    A.A. Wells, D. Post: Proc. SESA 16, 69 (1958)Google Scholar
  21. 21.
    G.R. Irwin: Proc. SESA 16, 92 (1958)Google Scholar
  22. 22.
    G.C. Sih: Int. J. Fracture 2, 628 (1966)Google Scholar
  23. 23.
    J. Eftis, H. Liebowitz: Int. J. Fracture 2–8, 383 (1972)Google Scholar
  24. 24.
    J. Eftis, N. Subramonian, H. Liebowitz: Eng. Fracture Mech. 9, 189 (1977)CrossRefGoogle Scholar
  25. 25.
    J. Eftis, N. Subramonian: Eng. Fracture Mech. 10, 43 (1978)CrossRefGoogle Scholar
  26. 26.
    R.N.L. Smith: Eng. Fracture Mech. 26, 463 (1987)CrossRefGoogle Scholar
  27. 27.
    P.S. Theocaris, C.P. Spyropoulos: Acta Mech. 48, 57 (1983)CrossRefGoogle Scholar
  28. 28.
    F. Kherkhof: Fracture des verres (1970, translation by Saint Gobain Industries 1974)Google Scholar
  29. 29.
    E. Sommer: Eng. Fracture Mech. 1, 539 (1969)CrossRefGoogle Scholar
  30. 30.
    F.A. McClintock, G.R. Irwin: ‘Plasticity effects in fracture mechanics’. In: Fracture toughness testing and its applications, ASTM STP 381. (Philadelphia 1965) pp. 84–113CrossRefGoogle Scholar
  31. 31.
    P.C. Paris, G.C. Sih: ‘Stress analysis of cracks’. In: Fracture toughness testing and its applications, ASTM STP 381. (Philadelphia 1965) pp. 30–83CrossRefGoogle Scholar
  32. 32.
    G.C. Sih, P.C. Paris, F. Erdogan: J. Appl. Mech. 29, 306 (1962)CrossRefGoogle Scholar
  33. 33.
    M.K. Kassir, G.C. Sih: J. Appl. Mech. 33, 601 (1966)CrossRefGoogle Scholar
  34. 34.
    M.K. Kassir, G.C. Sih: Int. J. Fracture 4, 347 (1968)Google Scholar
  35. 35.
    G.I. Barenblatt: Adv. Appl. Mech. 7, 55 (1962)CrossRefGoogle Scholar
  36. 36.
    A.H. England, A.E. Green: Proc. Camb. Phil. Soc. 59, 489 (1963)CrossRefGoogle Scholar
  37. 37.
    M. Lowengrub: Proc. Edinburgh Math. Soc. 15, 131 (1966)CrossRefGoogle Scholar
  38. 38.
    L.M. Keer: J. Mech. Phys. Solids 12, 149 (1964)CrossRefGoogle Scholar
  39. 39.
    J.N. Goodier: ‘Mathematical theory of equilibrium cracks’. In: Fracture, vol. II, ed. by H. Liebowitz (Academic Press, New York 1968) pp. 1–66Google Scholar
  40. 40.
    LN. Sneddon: Proc. Camb. Phil. Soc. 61, 609 (1965)CrossRefGoogle Scholar
  41. 41.
    D.Y.C. Chan, B.D. Hughes, L.R. White: J. Colloid Interface Sci. 115, 240 (1987)CrossRefGoogle Scholar
  42. 42.
    M. Lowengrub, I.N. Sneddon: Int. J. Eng. Sci. 3, 451 (1965)CrossRefGoogle Scholar
  43. 43.
    V.I. Fabrikant: Eng. Fracture Mech. 22, 855 (1985)CrossRefGoogle Scholar
  44. 44.
    H.F. Bueckner: ‘Field singularities and related integral representation’. In: Methods of analysis and solution of crack problems, ed. by G.C. Sih (Noordhoff, Leyden 1973) pp. 239–314Google Scholar
  45. 45.
    V.I. Fabrikant, T.S. Sankar, G.D. Xistris: Eng. Fracture Mech. 23, 921 (1986)CrossRefGoogle Scholar
  46. 46.
    J.R. Rice: J. Appl. Mech. Trans. ASME 90, 379 (1968)CrossRefGoogle Scholar
  47. 47.
    J.R. Rice: ‘Mathematical analysis in the mechanics of fracture’. In: Fracture, vol. II, ed. by H. Liebowitz (Academic Press, New York 1968) pp. 191–311Google Scholar
  48. 48.
    M.F. Kanninen, C.H. Popelar: Advanced fracture mechanics (Oxford University Press, New York 1985)Google Scholar
  49. 49.
    D.S. Dugdale: J. Mech. Phys. Solids 8, 100 (1960)CrossRefGoogle Scholar
  50. 50.
    N.I. Muskhelishvili: Some basic problems of the mathematical theory of elasticity (Noordhoff, Leyden 1975)Google Scholar
  51. 51.
    J.N. Goodier, F.A. Field: ‘Plastic energy dissipation in crack propagation’. In: Fracture of solids, ed. by D.C. Drucker, J.J. Gilman (Interscience Publ., New York 1963) pp. 103–118Google Scholar
  52. 52.
    F.M. Burdekin, D.E.W. Stone: J. Strain Anal. 1, 145 (1966)CrossRefGoogle Scholar
  53. 53.
    G.P. Morgan, I.M. Ward: Polymer 18, 87 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Daniel Maugis
    • 1
  1. 1.Laboratoire des Matériaux et des Structures du Génie CivilCNRS-LCPC, Cité Descartes - Parc club de la haute maisonChamps sur MarneFrance

Personalised recommendations