Advertisement

Surface Reconstruction Based on a Descriptive Approach

  • Abdelaziz Bouras
  • Behzad Shariat
  • Eliane Perna
  • Sebti Foufou
Chapter

Abstract

The design of complex surfaces is generally hard to achieve. A natural method consists in the subdivision of the global surface into basic surface elements. The different elements are independently designed and then assembled together to represent the final surface. This method requires a classification and a formal description of the basic elements. This chapter presents a general framework for surface description, based on a constructive tree approach. In this tree the leaves are surface primitives and the nodes are constructive operators.

Keywords

Surface Patch Fuzzy Point Merging Operator Constructive Tree Bezier Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Boe91]
    E. Boender. A survey of intersection algorithms for curved surfaces. Computer and Graphics, 15 (1): 109–115, 1991.MathSciNetCrossRefGoogle Scholar
  2. [CJ89]
    B.K. Choi and S.Y. Ju. Constant radius blending in surface modelling. omputer-Aided Design, 21 (4): 213–220, 1989.MATHCrossRefGoogle Scholar
  3. [Cog90]
    S. Coquillart. Effd: a sculpturing tool for 3d geometric modeling. Computer Graphics (Siggraph’90 proc.), 24 (9): 137–148, 1990.Google Scholar
  4. Dan93] M. Daniel. Calcul d’une enveloppe des normales d’une surface définie par des pôles. Rapport de recherche n° 43, Institut de Recherche en Informatique de Nantes, 93.Google Scholar
  5. [Deg90]
    W.L.F. Degan. Explicit continuity conditions for adjacent bézier surface patch es. Computer-Aided Design, 22 (7): 181–189, 1990.Google Scholar
  6. [Der90]
    T.D. Derose. Necessary and sufficient conditions for tangent plane continuity of bézier surfaces. Computer Aided Design, 22 (7): 165–179, 1990.MathSciNetGoogle Scholar
  7. [ea94]
    J. Vida et al. A survey of blending methods that use parametric surfaces. Computer-Aided Design, 26 (5): 341–362, 1994.MATHCrossRefGoogle Scholar
  8. [ea95]
    J. Zheng et al. Gcn continuity conditions for adjacentrational parametric surfaces. Computer Aided Geometric Design, 12: 111–130, 1995.MathSciNetMATHCrossRefGoogle Scholar
  9. [ea96]
    X. Ye et al. Geometric continuity between bézier patches and their constructi ons. Computer-Aided Design, 13 (6): 521–547, 1996.MATHCrossRefGoogle Scholar
  10. [Hud89]
    P. Hudak. Conception, evolution, and application of functional programming languages. ACM Computing Surveys, 21 (3): 359–411, 1989.CrossRefGoogle Scholar
  11. [J.F89]
    Daniel J.F. Blending parametric surface. ACM Transactions on Graphics, 8 (3): 164–173, July 1989.MATHCrossRefGoogle Scholar
  12. [JGW82]
    J.W. Thatcher J.A. Goguen and E.G. Wagner. An initial agebra approach to the specification, correctness, and implementation of abstract data types. Current Trends in Programming Methodology, 4 (4): 687–710, 1982.Google Scholar
  13. [KPP90]
    G.A. Kriezis, P.V. Prakash, and N.M. Patrikalakis. Method for intersecting algebraic surfaces with rational polynomial patches. 22 (10): 645–655, 1990.MATHGoogle Scholar
  14. [LH89]
    D. Liu and J. Hoschek. Gcl continuity conditions between adjacent rectangular and triangular bézier patches. omputerAided Design, 21 (4): 194–200, 1989.MATHGoogle Scholar
  15. [PG84]
    M.J. Pratt and A.D. Geisow. Surface/surface intersection problems. In J.A. Gregory, editor, Proc. of the Mathematics of surfaces, pages 118–148, Oxford University Press, U.K., September 1984.Google Scholar
  16. [PT95]
    L. Piegl and W. Tiller. The NURBS book. Springer, 1995.Google Scholar
  17. [RBP87]
    M. Jordan, R.E. Barnhill, G. Farin and B.R. Piper. Surface/surface intersection. Computer Aided Geometric Design, 4: 3–16, 1987.MathSciNetMATHCrossRefGoogle Scholar
  18. [Reg80]
    A.A.G. Requicha. Representation for rigid solids: Theory, methods and systems. ACM Computing Surveys, 12 (4): 437–464, 1980.CrossRefGoogle Scholar
  19. [SFB97]
    J.M. Brun S. Foufou and A. Bouras. Surfaces intersection for solids algebra: A classification algorithm. In R. Klein, W. Strasser and Springer R. Rau, editors, Geometric Modeling: Theory and Practice, pages 114–131, Oxford University Press, U.K., 1997.Google Scholar
  20. [SM88]
    T.W. Sederberg and R.J. Meyers. Loop detection in surface patch intersections. 5 (2): 161–171, 1988.MathSciNetMATHGoogle Scholar
  21. [SP86]
    T.W. Sederberg and S.R. Parry. Free-form deformations of solid geometric models. In Siggraph’86, pages 151–160, Dallas, August 1986.Google Scholar
  22. [SPVI98]
    B. Shariat, E. Perna, D. Vandorpe, and O.D. Isselmou. Cad-based surface fitting from range data. International Journal of Shape Modeling, 4 (3): 79–98, 1998.CrossRefGoogle Scholar
  23. [SV91]
    V. Shapiro and D.L. Vossler. Construction and optimisation of csg representations. Computer Aided Design, 23 (1): 4–20, 1991.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Abdelaziz Bouras
  • Behzad Shariat
  • Eliane Perna
    • 1
  • Sebti Foufou
    • 2
  1. 1.LIGIMUniversité Lyon 1VilleurbanneFR
  2. 2.LE2IUniversité de BourgogneDijonFR

Personalised recommendations