Quantum Optics pp 231-246 | Cite as

Atom Optics

  • Miguel Orszag
Part of the Advanced Texts in Physics book series (ADTP)


Atom optics [17.1], in analogy with electron or neutron optics, deals with manipulation of matter waves. As such, they are characterized by a wavelength, which is the de Broglie wavelength λdBh/p and the momentum p = mv. The momentum of a typical atom is larger than that of a typical photon, absorbed or emitted by that atom. There are several advantages of using atoms instead of photons for optical experiments:
  • Atoms have a non-zero rest mass, which is interesting when, for example, we want to detect gravitational waves.

  • Atoms, as opposed to neutrons or electrons, are less susceptible to stray fields, but cannot be manipulated as easily as charged particles.

  • Atoms have variable velocities, and as a result, one can in principle, control their de Broglie wavelengths.

  • Atoms are easy and cheap to produce, as compared, for instance, to neutrons.

  • A very important aspect of the atom optics, is that atoms have internal structure, whcih can be probed and modified using light.


Transverse Momentum Standing Wave Momentum Distribution Atomic Beam Thin Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [17.1]
    K.H. Baldwin, J. Aust, J. Phys. 49, 855 (1996).Google Scholar
  2. [17.2]
    J.V. Hajnal, K.G.H. Baldwin, P.T.H. Fisk, H.A. Bachor, G.I. Opat, Opt. Comm. 73, 331 (1989).ADSCrossRefGoogle Scholar
  3. [17.3]
    K.G.H. Baldwin, J.V. Hajnal, P.T.H. Fisk, H.A. Bachor, G.I. Opat, J. Mod. Opt. 37, 1839 (1990).ADSCrossRefGoogle Scholar
  4. [17.4]
    O. Stern, Naturwissensch. 17, 391 (1929).ADSCrossRefGoogle Scholar
  5. [17.5]
    P.E. Moskowitz, P.L. Gould, S.R. Atlas, D.E. Pritchard, Phys. Rev. Lett. 51, 370 (1983).ADSCrossRefGoogle Scholar
  6. [17.6]
    P.J. Martin, P.L. Gould, B.G. Oldaker, A.H. Miklich, D.E. Pritchard, Phys. Rev. A 36, 2495 (1987).ADSCrossRefGoogle Scholar
  7. [17.7]
    C. Tanguy, S. Reynaud, C. Cohen-Tannoudji, J. Phys. B 17, 4623 (1984).ADSCrossRefGoogle Scholar
  8. [17.8]
    P.L. Gould, G.A. Ruff, D.E. Pritchard, Phys. Rev. Lett. 56, 827 (1986).ADSCrossRefGoogle Scholar
  9. [17.9]
    P.J. Martin, B.G. Oldaker, A.H. Miklich, D.E. Pritchard, Phys. Rev. A 60, 515 (1988).ADSGoogle Scholar
  10. [17.10]
    P.L. Gould, P.G. Martin, G.A. Ruff, R.E. Stoner, L. Pique, D.E. Pritchard, Phys. Rev. A 43, 585 (1991).ADSCrossRefGoogle Scholar
  11. [17.11]
    B. Shore, P. Meystre, S. Stenholm, J. Opt. Soc. Am. B 8, 903 (1991).ADSCrossRefGoogle Scholar
  12. [17.12]
    V.M. Akulin, Le Kien. Fam, W.P. Schleich, Phys. Rev. A 44, R1642 (1991).CrossRefGoogle Scholar
  13. [17.13]
    S.M. Tan, D.F. Walls, Phys. Rev. A 44, R2779 (1991).ADSCrossRefGoogle Scholar
  14. [17.14]
    M. Wilkens, E. Schumacher, P. Meystre, Opt. Comm. 86, 34 (1991).ADSCrossRefGoogle Scholar
  15. [17.15]
    J.J. McClelland, R.E. Scholten, E.C. Palm, R.J. Celotta, Science 262, 877 (1993).ADSCrossRefGoogle Scholar
  16. [17.16]
    I.Sh. Averbukh, V.M. Akulin, W.P. Schleich, Phys. Rev. Lett. 72, 437 (1994).ADSCrossRefGoogle Scholar
  17. [17.17]
    E. Mayr, D. Krähmer, A.M. Herkommer, V.M. Akulin, W.P. Schleich, Acta Physica Polonica, Proceedings of Quantum Optics I II (1994)Google Scholar
  18. [17.18]
    B. Rohwedder, M. Orszag, Phys. Rev. A 54, 5076 (1996).ADSCrossRefGoogle Scholar
  19. [17.19]
    D.S. Saxon, Elementary Quantum Mechanics ( Holden-Day, San Francisco, CA, 1968 ).Google Scholar
  20. [17.20]
    J.J. McClelland, R. Gupta, Z.J. Jabbour, R.J. Celotta, Aust. J. Phys. 49, 555 (1996).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Miguel Orszag
    • 1
  1. 1.Facultad de FísicaPontifica Universidad Catòlica de Chile22 SantiagoChile

Personalised recommendations