Skip to main content

Quantum Laser Theory. Master Equation Approach

  • Chapter
Quantum Optics

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 556 Accesses

Abstract

For large fields interacting with atoms, the semiclassical description, that is, considering the atoms quantum mechanically and the field classically, seems to be adequate to describe the most classical features, such as threshold, steady state intensity, etc. However, whenever quantum fluctuations are to be considered, such as in determining the laser linewidth and photon statistics, we require the fully quantized field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu.M. Golubev, I.V. Sokolov, Zh. Eksp. Teor. Fiz. 87, 408 (1984); Sov. Phys. JETP 60, 234.

    Google Scholar 

  2. J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hillery, M.O. Scully, Opt. Comm. 72, 82 (1989);

    Article  ADS  Google Scholar 

  3. J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hillery, M.O. Scully, Phys. Rev. A 40, 5073 (1989);

    Article  ADS  Google Scholar 

  4. F. Haake, S.M. Tan, D. Walls, Phys. Rev. A 40, 7121 (1989).

    Article  ADS  Google Scholar 

  5. An excellent discussion on this point, as well as on noise supression in quantum optical systems, can be found in: L. Davidovich, Rev. Mod. Phys. 68, 127 (1996).

    Google Scholar 

  6. M.O. Scully, W.E. Lamb. Phys. Rev. 159, 208 (1967); also: M. Sargent III, M.O. Scully, W.E. Lamb, Laser Physics ( Addison Wesley, Reading, MA, 1974 );

    Google Scholar 

  7. M.O. Scully, W.E. Lamb, Phys. Rev. 159, 208 (1967);

    Article  ADS  Google Scholar 

  8. M.O. Scully, W.E. Lamb, Phys. Rev. 179, 368 (1969).

    Article  ADS  Google Scholar 

  9. S. Stenholm, Phys. Rep. 6, 1 (1973).

    Article  ADS  Google Scholar 

  10. V. Degiorgio, M.O. Scully. Phys. Rev. 2, 1170 (1970).

    Article  ADS  Google Scholar 

  11. R. Graham, H. Haken, Z. Physik 237, 31 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Lax, Phys. Rev. 157, 213 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  13. J.P. Gordon, Phys. Rev. 161, 367 (1967).

    Article  ADS  Google Scholar 

  14. H. Haken, Z. Physik 190, 327 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Walther, Phys. Rep. 219, 263 (1992).

    Article  ADS  Google Scholar 

  16. S. Haroche, J.M. Raimond, in Advances in Atomic and Molecular Physics, Vol 20, p 350, edited by D. Bates, B. Benderson (Academic Press, New York, 1985 ).

    Google Scholar 

  17. J.A.C. Gallas, G. Leuchs, H. Walther, H. Figger, in Advances in Atomic and Molecular Physics, Vol 20, p 413, edited by D. Bates, B. Benderson ( Academic Press, New York, 1985 ).

    Google Scholar 

  18. K.H. Drexhage, in Progress in Optics, Vol 12, edited by E. Wolf ( North-Holland, Amsterdam, 1974 ).

    Google Scholar 

  19. F. De-Martini, G. Innocenti, G. Jacovitz, D. Mantolini, Phys. Rev. Lett. 29, 2955 (1987).

    Article  ADS  Google Scholar 

  20. G. Gabrielse, H. Dehmelt, Phys. Rev. Lett. 55, 67 (1985).

    Article  ADS  Google Scholar 

  21. M.S. Brune, J.M. Raimond, P. Goy, L. Davidovich, S. Haroche, Phys. Rev. Lett. 59, 1899 (1987).

    Article  ADS  Google Scholar 

  22. P. Filipowicz, J. Javanainen, P. Meystre, Phys. Rev. A 34, 3077 (1986).

    Article  ADS  Google Scholar 

  23. J.J. Slosser, P. Meystre, Phys. Rev. A 41, 3867 (1990).

    Google Scholar 

  24. M. Orszag, R. Ramirez, J.C. Retamal, C. Saavedra, Phys. Rev. A 49, 2933 (1994).

    Article  ADS  Google Scholar 

  25. E. Wehner, R. Seno, N. Sterpi, B.G. Englert, H. Walther, Opt. Comm. 110, 655 (1994).

    Article  ADS  Google Scholar 

  26. K. An, J.J. Childs, R.R. Dasari, M. Feld, Phys. Rev. Lett. 73, 3375 (1994).

    Article  ADS  Google Scholar 

  27. M. Weidinger, B.T.H. Varcoe, R. Heerlein, H. Walther, Phys. Rev. Lett. 82, 3795 (1999).

    Article  ADS  Google Scholar 

  28. F.T. Arecchi, A.M. Ricca, Phys. Rev. A 15, 308 (1977).

    Article  ADS  Google Scholar 

  29. F. Casagrande, L.A. Lugiato, Phys. Rev. A 14, 778 (1976).

    Article  ADS  Google Scholar 

  30. R. Graham, W.A. Smith, Opt. Comm. 7, 289 (1973).

    Article  ADS  Google Scholar 

  31. L.A. Lugiato, Physics 81A, 565 (1976).

    Google Scholar 

  32. H. Risken, Z. Phys. 191, 186 (1965).

    MathSciNet  Google Scholar 

  33. H. Risken, H.D. Vollmer, Z. Phys. 201, 323 (1967).

    Article  ADS  Google Scholar 

  34. M.O. Scully, in Proceedings of the International School of Physics `Enrico Fermi’ Course XLII, edited by R. Glauber ( Academic Press, New York, 1969 ).

    Google Scholar 

  35. M.O. Scully, M.S. Zubairy, Quantum Optics ( Cambridge University Press, Cambridge, 1977 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orszag, M. (2000). Quantum Laser Theory. Master Equation Approach. In: Quantum Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04114-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04114-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04116-1

  • Online ISBN: 978-3-662-04114-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics