Skip to main content

Geologic Application of Cathodoluminescence of Silicates

  • Chapter
Cathodoluminescence in Geosciences

Abstract

Cathodoluminescence from silicates has been known since the end of last century and early in this century, when Crookes (1879) and Goldstein (1907) observed that certain minerals, like zircon and quartz, emit light during bombardment with cathode-rays in evacuated glass tubes. Since then, a large number of silicates have been found to emit visible light during electron bombardment (Marshall 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AlDahan AA, Ramseyer K, Morad S, Collini B (1988) Low temperature alterations in granitic rocks from the Siljan Ring structure, central Sweden. In: Bodén A, Eriksson KG (eds) Deep Drilling in Crystalline Bedrock. Springer, Berlin, 1, pp 209–216

    Google Scholar 

  • Barbin V, Schvoerer M (1997) Cathodoluminescence et Géosciences. Comptes Rendu Académie des Sciences, Paris, Sciences de la terre et des planètes, Série IIa, 325: 1–13

    Google Scholar 

  • Benstock EJ, Buseck PR, Steele IM (1997) Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. American Mineralogist 82: 310–315

    Google Scholar 

  • Bjørkum PA (1996) How important is pressure in causing dissolution of quartz in sandstones? Journal of Sedimentary Research 66: 147–154

    Google Scholar 

  • Blanc P, Arbey F, Cros P, Cesborn F, Ohnenstetter D (1994) Applications de la microscopie électronique à balayage et de la cathodoluminescence à des matériaux géologiques (sulfates, carbonates, silicates). Bulletin de la Societé géologique de France 165: 341–352

    Google Scholar 

  • Boroznovskaya NM, Zhukova IA (1987) X-ray luminescence characteristics of potash feldspar from Kazakhstan rare-metal granite pegmatites. Geochemistry International 24: 47–53

    Google Scholar 

  • Burley SD, Mullis J, Matter A (1989) Timing of diagenesis in the Tartan reservoir (UK North Sea): constraints from combined cathodoluminescence microscopy and fluid inclusion studies. Journal of Marine and Petroleum Geology 6: 98–120

    Article  Google Scholar 

  • Crookes W (1879) Contributions to molecular physics in high vacua. Philosophical Transactions of the Royal Society of London 170: 641–662

    Article  Google Scholar 

  • Demars C, Pagel M, Deloule E, Blanc P (1996) Cathodoluminescence of quartz from sandstones: Interpretation of the UV range by determination of the trace element distributionm and of fluid inclusion P,T,X properties in authigenic quartz. American Mineralogist 81: 891–901

    Google Scholar 

  • D’Lemos RS, Kearsley AT, Pembroke JW, Watt GR, Wright P (1997) Complex quartz growth histories in granite revealed by scanning cathodoluminescence techniques. Geological Magazine 134: 549–552

    Article  Google Scholar 

  • Evans J, Hogg AJC, Hopkins MS, Howarth RJ (1994) Quantification of quartz cements using combined SEM, CL, and image analysis. Journal of Sedimentary Research A64: 334–338

    Google Scholar 

  • Finch AA (1991) Conversion of nepheline to sodalite during subsolidus processes in alkaline rocks. Mineralogical Magazine 55: 459–463

    Article  Google Scholar 

  • Finch AA, Walker DL (1991) Cathodoluminescence and microporosity in alkali feldspars from the Blâ Mâne So perthosite, South Greenland. Mineralogical Magazine 55: 583–589

    Google Scholar 

  • Geake JE, Walker G (1966) The luminescence spectra of meteorites. Geochimica et Cosmochimica Acta 30: 929–937

    Article  Google Scholar 

  • Geake JE, Walker G, Mills AA (1972) Luminescence excitation by protons and electrons applied to Apollo lunar samples. In: Runcorn SK, Urey HC (eds) The Moon. International Astronomical Union, Symposium 47,22.-26.4. 1971, University of Newcastle upon Tyne, Reidel Publishing Company, Dordrecht, pp 270–297

    Google Scholar 

  • Geake JE, Walker G, Telfer DJ, Mills AA, Garlick GFJ (1973) Luminescence of lunar, terrestrial and synthesized plagioclase, caused by Mn2+ and Fei+. Proceedings of the 4th Lunar Science Conference, Geochimica et Cosmochimica Acta 3: 3181–3189

    Google Scholar 

  • Geake JE, Walker G, Telfer DJ, Mills AA (1977) The cause and significance of luminescence in lunar plagioclase. Philosophical Transactions of the Royal Society of London A285: 403–408

    Google Scholar 

  • Goldstein E (1907) Über das Auftreten roten Phosphoreszenzlichtes an Geissler’schen Röhren. Bericht der Deutschen Physikalischen Gesellschaft 598–605

    Google Scholar 

  • Gorobec B (1981) Spectra of Luminescence of Minerals. (in Russian) Ministry of Geology of the USSR, Moscow, 149 p

    Google Scholar 

  • Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence studies of feldspar minerals. (this Vol.)

    Google Scholar 

  • Gruner T, Kempe U, Wolf D (2000) Relevance of cathodoluminescence (CL) for the interpreta- tion of U-Pb zircon ages: an example from the Saxonian Granulite Complex. (this Vol.)

    Google Scholar 

  • Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV s-PIXE. Canadian Mineralogist 31: 637–647

    Google Scholar 

  • Hearn PP (1987) A quantitative technique for determining the mass-fractions of authigenic and detrital K-feldspar in mineral separates. Scanning Microscopy 1 /3: 1039–1043

    Google Scholar 

  • Hopson RF, Ramseyer K (1990) Cathodoluminescence microscopy of myrmekite. Geology 18: 336–339

    Article  Google Scholar 

  • Houseknecht DW (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation and porosity in sandstones. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 59–66

    Google Scholar 

  • Kirsh Y, Townsend PD (1988) Speculations on the blue and red bands in the TL emission spectrum of albite and microcline. Nuclear Tracks and Radiation Measurements 14: 43–49

    Article  Google Scholar 

  • Krynauw JR, Behr HJ, Van den Kerkhof AM (1994) Sill emplacement in wet sediments: fluid inclusion and cathodoluminescence studies at Grunehogna, western Dronning Maud Land, Antarctica. Journal of the Geological Society of London 151: 777–794

    Google Scholar 

  • Lange H, Kressin G (1955) Der Einfluss der Kristallstruktur auf die Lumineszenz des Calciumsilikates (Mn, Pb ). Zeitschrift für Physik 142: 380–386

    Google Scholar 

  • Laud KR, Gibbons EF, Tien TY, Stadler HL (1971) Cathodoluminescence of Ce3+ and Eue+-activated alkaline earth feldspars. Journal of the Electrochemical Society 118: 918–923

    Article  Google Scholar 

  • Long JVP, Agrell S (1965) The cathodoluminescence of minerals in thin section. Mineralogical Magazine 34: 318–326

    Article  Google Scholar 

  • Machel HG, Burton EA (1991) Factors governing cathodoluminescence in calcite and dolomite, and their implication for studies of carbonate diagenesis. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 37–57

    Google Scholar 

  • Marfunin AS (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer Verlag, Berlin, 325 p

    Book  Google Scholar 

  • Mariano AN, Ito J, Ring PJ (1973) Cathodoluminescence of plagioclase feldspars. Geological Society of America, Boulder, Colorado, Abstracts with Programs 5, 726

    Google Scholar 

  • Mariano AN (1989) Cathodoluminescence emission spectra of rare earth element activators in minerals. In: Lipin BR, Mckay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Review in Mineralogy 21, pp 339–348

    Google Scholar 

  • Marmier P (1983) Kernphysik I. Zürich, Verlag der Fachvereine, 325 p

    Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of Geological Materials. Unwin Hyman, Boston, 146 p

    Google Scholar 

  • Matter A, Ramseyer K (1985) Cathodoluminescence microscopy as a tool for provenance studies of sandstones. In: Zuffa GG (ed) Provenance of Arenites. NATO ASI Series, Boston, Reidel Publishing Company 148, pp 191–211

    Google Scholar 

  • Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. Journal of Sedimentary Petrology 60: 53–58

    Google Scholar 

  • Milliken KL (1989) Petrography and composition of authigenic feldspars, Oligocene Frio Formation, South Texsas. Journal of Sedimentary Petrology 59: 361–374

    Article  Google Scholar 

  • Milliken KL (1994) Cathodoluminescent textures and the origin of quartz silt in Oligocene mudrocks, South Texsas. Journal of Sedimentary Research A64: 567–571

    Article  Google Scholar 

  • Milliken KL, Laubach SE (2000) The role of brittle deformation in sandstone diagenesis and fracture in siliciclastic petroleum reservoirs. (this vol.)

    Google Scholar 

  • Milliken KL, McBride EF, Land LS (1989) Numerical assessment of dissolution versus replacement in the subsurface destruction of detrital feldspars, Oligocene Frio Formation, South Texsas. Journal of Sedimentary Petrology 59: 740–757

    Google Scholar 

  • Mora CI, Ramseyer K (1992) Cathodoluminescence of coexisting plagioclases, Boehls Butte Anorthosite: Cathodoluminescence activators and identification of fluid flow paths. American Mineralogist 77: 1258–1265

    Google Scholar 

  • Mullis J (1991) Bergkristall. Schweizer Strahler 9: 127–161

    Google Scholar 

  • Mullis J, Dubessy J, Poty B, O’Neil J (1994) Fluid regimes during late stages of a continental collision: Physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochimica et Cosmochimica Acta 58: 2239–2267

    Google Scholar 

  • Mumenthaler Th, Schmitt HW, Peters Tj, Ramseyer K, Zweili F (1995) Tracing the reaction processes during firing of carbonate containing brick mixes with the help of cathodoluminescence. Ziegeleiindustrie International 5 /95: 307–319

    Google Scholar 

  • Odin GS, Barbin V, Hurford AJ, Baadsgaard H, Galbrun B, Gillot PY (1991) Multi-method radiometric dating of volcano-sedimentary layers from northern Italy: age and duration of the Priabonian stage. Earth and Planetary Science Letters 106: 151–168

    Article  Google Scholar 

  • Ohnenstetter D, Cesbron F, Remond G, Caruba R, Claude JM (1991) Émission de cathodoluminescence de deux populations de zircons naturels: tendative d’interpretation. Comptes Rendu Académie des Sciences, Paris, Série II, 313: 641–647

    Google Scholar 

  • Owen MR (1988) Radiation-damage halos in quartz. Geology 16: 529–532

    Article  Google Scholar 

  • Owen MR (1991) Application of cathodoluminescence to sandstone provenance. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 67–75

    Google Scholar 

  • Pagel M, Barbarand J, Blanc P, Demars C, Savary V (1996) Combined UV and visible cathodoluminescence, fluid inclusion and trace element studies of authigenic quartz in sandstones. Workshop “Quartz cement: origin and effects on hydrocarbon reservoirs” 13.-14. May, Belfast, 27

    Google Scholar 

  • Poller U, Liebetrau V, Todt W (2000) Cathodoluminescence controlled dating of zircons by TIMS: application to metamorphic rocks. (this Vol.)

    Google Scholar 

  • Ramseyer K (1990) Types of cathodoluminescence colours in a-quartz. GAC-MAC Annual Meeting, Vancover, Abstracts A107

    Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of a-quartz. American Mineralogist 75: 791–800

    Google Scholar 

  • Ramseyer K, Baumann J, Matter A, Mullis J (1988) Cathodoluminescence colours of a-quartz. Mineralogical Magazine 52: 669–677

    Article  Google Scholar 

  • Ramseyer K, Boles JR, Lichtner PC (1992b) Mechanism of plagioclase albitization. Journal of Sedimentary Petrology 62: 349–356

    Google Scholar 

  • Ramseyer K, Diamond L, Boles JR (1993) Authigenic K-NH4-feldspar in sandstones: a finger- print of the diagenesis of organic matter. Journal of Sedimentary Petrology 63: 1092–1099

    Google Scholar 

  • Ramseyer K, AlDahan AA, Collini B, Landström O (1992a) Petrological modifications in granitic rocks from the Siljan impact structure: Evidence from cathodoluminescence. Tectonophysics 216: 195–204

    Google Scholar 

  • Ramseyer K, Fischer J, Matter A, Eberhardt P, Geiss J (1989) A cathodoluminescence microscope for low intensity luminescence. Journal of Sedimentary Petrology 59: 619–622

    Article  Google Scholar 

  • Reeder RJ (1991) An overview of zoning in carbonate minerals. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 77–82

    Google Scholar 

  • Remond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schvoerer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microscopy 6 /1: 23–68

    Google Scholar 

  • Richter DK, Zinkernagel U (1975) Petrographie des “Permoskyth” der Jaggl-Plawen-Einheit ( Südtirol) and Diskussion der Detritusherkunft mit Hilfe der Kathodenlumineszenz-Untersuchung. Geologische Rundschau 64: 783–807

    Google Scholar 

  • Schneider N (1993) Das lumineszenzaktive Strukturinventar von Quarzphänokristen in Rhyolithen. Göttinger Arbeiten zur Geologie and Paläontologie 60: 1–81

    Google Scholar 

  • Sears DWG, DeHart JM, Hasan FA, Lofgren GE (1990) Induced thermoluminescence and cathodoluminescence studies of meteorites. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Symposium Series 415, pp 190–222

    Google Scholar 

  • Sippel RF (1965) Simple device for luminescence petrography. Review of Scientific Instruments 36: 1556–1558

    Article  Google Scholar 

  • Sippel RF (1968) Sandstone petrology, evidence from luminescence petrography. Journal of Sedimentary Petrology 38: 530–554

    Article  Google Scholar 

  • Sippel RF, Spencer AB (1970) Luminescence petrography and properties of lunar crystalline rocks and breccias. Proceedings of the Apollo 11 Lunar Scientific Conference, 3, Geochimica et Cosmochimica Acta, Supplement 1, 2413–2426

    Google Scholar 

  • Smith JV, Stenstrom RC (1965) Electron-excited luminescence as a petrological tool. Journal of Geology 73: 627–635

    Article  Google Scholar 

  • Speit B, Lehmann G (1982) Radiation defects in feldspars. Physics and Chemistry of Minerals 8: 77–82

    Article  Google Scholar 

  • Steele IM (1990): Mineralogy of meteorites revealed by cathodoluminescence. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Symposium Series 415, pp 150–164

    Google Scholar 

  • Steele IM (1995) Oscillatory zoning in meteoritic forsterite. American Mineralogist 80: 823–832 Stevens Kalceff MA, Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Review B 52: 3122–3134

    Google Scholar 

  • Stevens Kalceff MA, Phillips MR, Moon AR (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. (this Vol.)

    Google Scholar 

  • Telfer DJ, Walker G (1978) Ligand field bands of Mn2+ and Fe3+ luminescence centres and their site occupancy in plagioclase feldspars. Modern Geology 6: 199–210

    Google Scholar 

  • Trofimov AK (1962) The luminescence spectrum of zircon. Geochemistry 11: 1102–1108

    Google Scholar 

  • Vavra G (1990) On the kinematics of zircon growth and its petrographic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology 106: 90–99

    Article  Google Scholar 

  • von Engelhardt W, Matthäi SK, Walzebuck J (1992) Araguainha impact crater, Brazil. I. The interior part of the uplift. Meteoritics 2: 442–457

    Google Scholar 

  • Walker G (1985) Mineralogical applications of luminescence technique. In: Berry FJ, Vaughan DJ (eds) Chemical Bonding and Spectroscopy in Mineral Chemistry. Chapman & Hall, London, pp 103–140

    Chapter  Google Scholar 

  • Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta 61: 4337–4348

    Article  Google Scholar 

  • Wenzel T, Ramseyer K (1992) Mineralogical and mineral-chemical changes in a fractionation-dominated diorite-monzodiorite-monzonite sequence: evidence from cathodoluminescence. European Journal of Mineralogy 4: 1391–1399

    Google Scholar 

  • White WB, Matsumura M, Linnehan DG, Furukawa T, Chandrasekhar BK (1986) Absorption and luminescence of Fei+ in single-crystal orthoclase. American Mineralogist 71: 1415–1419.

    Google Scholar 

  • Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentology 8: 1–69

    Google Scholar 

  • Zinkernagel U (1992) Vulkanogener Detritus in Sandsteinen des Oberkarbons in Norddeutschland. In: Frank F, Zinkernagel U, Füchtbauer H (eds) Zur Liefergebietsfrage der Sandsteine des Nordwestdeutschen Oberkarbons. DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle 384–8: 35–77

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramseyer, K., Mullis, J. (2000). Geologic Application of Cathodoluminescence of Silicates. In: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (eds) Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04086-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04086-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08526-0

  • Online ISBN: 978-3-662-04086-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics