Geologic Application of Cathodoluminescence of Silicates

  • Karl Ramseyer
  • Josef Mullis


Cathodoluminescence from silicates has been known since the end of last century and early in this century, when Crookes (1879) and Goldstein (1907) observed that certain minerals, like zircon and quartz, emit light during bombardment with cathode-rays in evacuated glass tubes. Since then, a large number of silicates have been found to emit visible light during electron bombardment (Marshall 1988).


Fluid Inclusion Sedimentary Petrology Geologic Application American Mineralogist Quartz Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AlDahan AA, Ramseyer K, Morad S, Collini B (1988) Low temperature alterations in granitic rocks from the Siljan Ring structure, central Sweden. In: Bodén A, Eriksson KG (eds) Deep Drilling in Crystalline Bedrock. Springer, Berlin, 1, pp 209–216Google Scholar
  2. Barbin V, Schvoerer M (1997) Cathodoluminescence et Géosciences. Comptes Rendu Académie des Sciences, Paris, Sciences de la terre et des planètes, Série IIa, 325: 1–13Google Scholar
  3. Benstock EJ, Buseck PR, Steele IM (1997) Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. American Mineralogist 82: 310–315Google Scholar
  4. Bjørkum PA (1996) How important is pressure in causing dissolution of quartz in sandstones? Journal of Sedimentary Research 66: 147–154Google Scholar
  5. Blanc P, Arbey F, Cros P, Cesborn F, Ohnenstetter D (1994) Applications de la microscopie électronique à balayage et de la cathodoluminescence à des matériaux géologiques (sulfates, carbonates, silicates). Bulletin de la Societé géologique de France 165: 341–352Google Scholar
  6. Boroznovskaya NM, Zhukova IA (1987) X-ray luminescence characteristics of potash feldspar from Kazakhstan rare-metal granite pegmatites. Geochemistry International 24: 47–53Google Scholar
  7. Burley SD, Mullis J, Matter A (1989) Timing of diagenesis in the Tartan reservoir (UK North Sea): constraints from combined cathodoluminescence microscopy and fluid inclusion studies. Journal of Marine and Petroleum Geology 6: 98–120CrossRefGoogle Scholar
  8. Crookes W (1879) Contributions to molecular physics in high vacua. Philosophical Transactions of the Royal Society of London 170: 641–662CrossRefGoogle Scholar
  9. Demars C, Pagel M, Deloule E, Blanc P (1996) Cathodoluminescence of quartz from sandstones: Interpretation of the UV range by determination of the trace element distributionm and of fluid inclusion P,T,X properties in authigenic quartz. American Mineralogist 81: 891–901Google Scholar
  10. D’Lemos RS, Kearsley AT, Pembroke JW, Watt GR, Wright P (1997) Complex quartz growth histories in granite revealed by scanning cathodoluminescence techniques. Geological Magazine 134: 549–552CrossRefGoogle Scholar
  11. Evans J, Hogg AJC, Hopkins MS, Howarth RJ (1994) Quantification of quartz cements using combined SEM, CL, and image analysis. Journal of Sedimentary Research A64: 334–338Google Scholar
  12. Finch AA (1991) Conversion of nepheline to sodalite during subsolidus processes in alkaline rocks. Mineralogical Magazine 55: 459–463CrossRefGoogle Scholar
  13. Finch AA, Walker DL (1991) Cathodoluminescence and microporosity in alkali feldspars from the Blâ Mâne So perthosite, South Greenland. Mineralogical Magazine 55: 583–589Google Scholar
  14. Geake JE, Walker G (1966) The luminescence spectra of meteorites. Geochimica et Cosmochimica Acta 30: 929–937CrossRefGoogle Scholar
  15. Geake JE, Walker G, Mills AA (1972) Luminescence excitation by protons and electrons applied to Apollo lunar samples. In: Runcorn SK, Urey HC (eds) The Moon. International Astronomical Union, Symposium 47,22.-26.4. 1971, University of Newcastle upon Tyne, Reidel Publishing Company, Dordrecht, pp 270–297Google Scholar
  16. Geake JE, Walker G, Telfer DJ, Mills AA, Garlick GFJ (1973) Luminescence of lunar, terrestrial and synthesized plagioclase, caused by Mn2+ and Fei+. Proceedings of the 4th Lunar Science Conference, Geochimica et Cosmochimica Acta 3: 3181–3189Google Scholar
  17. Geake JE, Walker G, Telfer DJ, Mills AA (1977) The cause and significance of luminescence in lunar plagioclase. Philosophical Transactions of the Royal Society of London A285: 403–408Google Scholar
  18. Goldstein E (1907) Über das Auftreten roten Phosphoreszenzlichtes an Geissler’schen Röhren. Bericht der Deutschen Physikalischen Gesellschaft 598–605Google Scholar
  19. Gorobec B (1981) Spectra of Luminescence of Minerals. (in Russian) Ministry of Geology of the USSR, Moscow, 149 pGoogle Scholar
  20. Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence studies of feldspar minerals. (this Vol.)Google Scholar
  21. Gruner T, Kempe U, Wolf D (2000) Relevance of cathodoluminescence (CL) for the interpreta- tion of U-Pb zircon ages: an example from the Saxonian Granulite Complex. (this Vol.)Google Scholar
  22. Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV s-PIXE. Canadian Mineralogist 31: 637–647Google Scholar
  23. Hearn PP (1987) A quantitative technique for determining the mass-fractions of authigenic and detrital K-feldspar in mineral separates. Scanning Microscopy 1 /3: 1039–1043Google Scholar
  24. Hopson RF, Ramseyer K (1990) Cathodoluminescence microscopy of myrmekite. Geology 18: 336–339CrossRefGoogle Scholar
  25. Houseknecht DW (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation and porosity in sandstones. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 59–66Google Scholar
  26. Kirsh Y, Townsend PD (1988) Speculations on the blue and red bands in the TL emission spectrum of albite and microcline. Nuclear Tracks and Radiation Measurements 14: 43–49CrossRefGoogle Scholar
  27. Krynauw JR, Behr HJ, Van den Kerkhof AM (1994) Sill emplacement in wet sediments: fluid inclusion and cathodoluminescence studies at Grunehogna, western Dronning Maud Land, Antarctica. Journal of the Geological Society of London 151: 777–794Google Scholar
  28. Lange H, Kressin G (1955) Der Einfluss der Kristallstruktur auf die Lumineszenz des Calciumsilikates (Mn, Pb ). Zeitschrift für Physik 142: 380–386Google Scholar
  29. Laud KR, Gibbons EF, Tien TY, Stadler HL (1971) Cathodoluminescence of Ce3+ and Eue+-activated alkaline earth feldspars. Journal of the Electrochemical Society 118: 918–923CrossRefGoogle Scholar
  30. Long JVP, Agrell S (1965) The cathodoluminescence of minerals in thin section. Mineralogical Magazine 34: 318–326CrossRefGoogle Scholar
  31. Machel HG, Burton EA (1991) Factors governing cathodoluminescence in calcite and dolomite, and their implication for studies of carbonate diagenesis. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 37–57Google Scholar
  32. Marfunin AS (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer Verlag, Berlin, 325 pCrossRefGoogle Scholar
  33. Mariano AN, Ito J, Ring PJ (1973) Cathodoluminescence of plagioclase feldspars. Geological Society of America, Boulder, Colorado, Abstracts with Programs 5, 726Google Scholar
  34. Mariano AN (1989) Cathodoluminescence emission spectra of rare earth element activators in minerals. In: Lipin BR, Mckay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Review in Mineralogy 21, pp 339–348Google Scholar
  35. Marmier P (1983) Kernphysik I. Zürich, Verlag der Fachvereine, 325 pGoogle Scholar
  36. Marshall DJ (1988) Cathodoluminescence of Geological Materials. Unwin Hyman, Boston, 146 pGoogle Scholar
  37. Matter A, Ramseyer K (1985) Cathodoluminescence microscopy as a tool for provenance studies of sandstones. In: Zuffa GG (ed) Provenance of Arenites. NATO ASI Series, Boston, Reidel Publishing Company 148, pp 191–211Google Scholar
  38. Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. Journal of Sedimentary Petrology 60: 53–58Google Scholar
  39. Milliken KL (1989) Petrography and composition of authigenic feldspars, Oligocene Frio Formation, South Texsas. Journal of Sedimentary Petrology 59: 361–374CrossRefGoogle Scholar
  40. Milliken KL (1994) Cathodoluminescent textures and the origin of quartz silt in Oligocene mudrocks, South Texsas. Journal of Sedimentary Research A64: 567–571CrossRefGoogle Scholar
  41. Milliken KL, Laubach SE (2000) The role of brittle deformation in sandstone diagenesis and fracture in siliciclastic petroleum reservoirs. (this vol.)Google Scholar
  42. Milliken KL, McBride EF, Land LS (1989) Numerical assessment of dissolution versus replacement in the subsurface destruction of detrital feldspars, Oligocene Frio Formation, South Texsas. Journal of Sedimentary Petrology 59: 740–757Google Scholar
  43. Mora CI, Ramseyer K (1992) Cathodoluminescence of coexisting plagioclases, Boehls Butte Anorthosite: Cathodoluminescence activators and identification of fluid flow paths. American Mineralogist 77: 1258–1265Google Scholar
  44. Mullis J (1991) Bergkristall. Schweizer Strahler 9: 127–161Google Scholar
  45. Mullis J, Dubessy J, Poty B, O’Neil J (1994) Fluid regimes during late stages of a continental collision: Physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochimica et Cosmochimica Acta 58: 2239–2267Google Scholar
  46. Mumenthaler Th, Schmitt HW, Peters Tj, Ramseyer K, Zweili F (1995) Tracing the reaction processes during firing of carbonate containing brick mixes with the help of cathodoluminescence. Ziegeleiindustrie International 5 /95: 307–319Google Scholar
  47. Odin GS, Barbin V, Hurford AJ, Baadsgaard H, Galbrun B, Gillot PY (1991) Multi-method radiometric dating of volcano-sedimentary layers from northern Italy: age and duration of the Priabonian stage. Earth and Planetary Science Letters 106: 151–168CrossRefGoogle Scholar
  48. Ohnenstetter D, Cesbron F, Remond G, Caruba R, Claude JM (1991) Émission de cathodoluminescence de deux populations de zircons naturels: tendative d’interpretation. Comptes Rendu Académie des Sciences, Paris, Série II, 313: 641–647Google Scholar
  49. Owen MR (1988) Radiation-damage halos in quartz. Geology 16: 529–532CrossRefGoogle Scholar
  50. Owen MR (1991) Application of cathodoluminescence to sandstone provenance. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 67–75Google Scholar
  51. Pagel M, Barbarand J, Blanc P, Demars C, Savary V (1996) Combined UV and visible cathodoluminescence, fluid inclusion and trace element studies of authigenic quartz in sandstones. Workshop “Quartz cement: origin and effects on hydrocarbon reservoirs” 13.-14. May, Belfast, 27Google Scholar
  52. Poller U, Liebetrau V, Todt W (2000) Cathodoluminescence controlled dating of zircons by TIMS: application to metamorphic rocks. (this Vol.)Google Scholar
  53. Ramseyer K (1990) Types of cathodoluminescence colours in a-quartz. GAC-MAC Annual Meeting, Vancover, Abstracts A107Google Scholar
  54. Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of a-quartz. American Mineralogist 75: 791–800Google Scholar
  55. Ramseyer K, Baumann J, Matter A, Mullis J (1988) Cathodoluminescence colours of a-quartz. Mineralogical Magazine 52: 669–677CrossRefGoogle Scholar
  56. Ramseyer K, Boles JR, Lichtner PC (1992b) Mechanism of plagioclase albitization. Journal of Sedimentary Petrology 62: 349–356Google Scholar
  57. Ramseyer K, Diamond L, Boles JR (1993) Authigenic K-NH4-feldspar in sandstones: a finger- print of the diagenesis of organic matter. Journal of Sedimentary Petrology 63: 1092–1099Google Scholar
  58. Ramseyer K, AlDahan AA, Collini B, Landström O (1992a) Petrological modifications in granitic rocks from the Siljan impact structure: Evidence from cathodoluminescence. Tectonophysics 216: 195–204Google Scholar
  59. Ramseyer K, Fischer J, Matter A, Eberhardt P, Geiss J (1989) A cathodoluminescence microscope for low intensity luminescence. Journal of Sedimentary Petrology 59: 619–622CrossRefGoogle Scholar
  60. Reeder RJ (1991) An overview of zoning in carbonate minerals. In: Barker C, Kopp OC (eds) Luminescence Microscopy and Spectroscopy. Society for Sedimentary Geology, SEPM Short Course 25, pp 77–82Google Scholar
  61. Remond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schvoerer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microscopy 6 /1: 23–68Google Scholar
  62. Richter DK, Zinkernagel U (1975) Petrographie des “Permoskyth” der Jaggl-Plawen-Einheit ( Südtirol) and Diskussion der Detritusherkunft mit Hilfe der Kathodenlumineszenz-Untersuchung. Geologische Rundschau 64: 783–807Google Scholar
  63. Schneider N (1993) Das lumineszenzaktive Strukturinventar von Quarzphänokristen in Rhyolithen. Göttinger Arbeiten zur Geologie and Paläontologie 60: 1–81Google Scholar
  64. Sears DWG, DeHart JM, Hasan FA, Lofgren GE (1990) Induced thermoluminescence and cathodoluminescence studies of meteorites. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Symposium Series 415, pp 190–222Google Scholar
  65. Sippel RF (1965) Simple device for luminescence petrography. Review of Scientific Instruments 36: 1556–1558CrossRefGoogle Scholar
  66. Sippel RF (1968) Sandstone petrology, evidence from luminescence petrography. Journal of Sedimentary Petrology 38: 530–554CrossRefGoogle Scholar
  67. Sippel RF, Spencer AB (1970) Luminescence petrography and properties of lunar crystalline rocks and breccias. Proceedings of the Apollo 11 Lunar Scientific Conference, 3, Geochimica et Cosmochimica Acta, Supplement 1, 2413–2426Google Scholar
  68. Smith JV, Stenstrom RC (1965) Electron-excited luminescence as a petrological tool. Journal of Geology 73: 627–635CrossRefGoogle Scholar
  69. Speit B, Lehmann G (1982) Radiation defects in feldspars. Physics and Chemistry of Minerals 8: 77–82CrossRefGoogle Scholar
  70. Steele IM (1990): Mineralogy of meteorites revealed by cathodoluminescence. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Symposium Series 415, pp 150–164Google Scholar
  71. Steele IM (1995) Oscillatory zoning in meteoritic forsterite. American Mineralogist 80: 823–832 Stevens Kalceff MA, Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Review B 52: 3122–3134Google Scholar
  72. Stevens Kalceff MA, Phillips MR, Moon AR (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. (this Vol.)Google Scholar
  73. Telfer DJ, Walker G (1978) Ligand field bands of Mn2+ and Fe3+ luminescence centres and their site occupancy in plagioclase feldspars. Modern Geology 6: 199–210Google Scholar
  74. Trofimov AK (1962) The luminescence spectrum of zircon. Geochemistry 11: 1102–1108Google Scholar
  75. Vavra G (1990) On the kinematics of zircon growth and its petrographic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology 106: 90–99CrossRefGoogle Scholar
  76. von Engelhardt W, Matthäi SK, Walzebuck J (1992) Araguainha impact crater, Brazil. I. The interior part of the uplift. Meteoritics 2: 442–457Google Scholar
  77. Walker G (1985) Mineralogical applications of luminescence technique. In: Berry FJ, Vaughan DJ (eds) Chemical Bonding and Spectroscopy in Mineral Chemistry. Chapman & Hall, London, pp 103–140CrossRefGoogle Scholar
  78. Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta 61: 4337–4348CrossRefGoogle Scholar
  79. Wenzel T, Ramseyer K (1992) Mineralogical and mineral-chemical changes in a fractionation-dominated diorite-monzodiorite-monzonite sequence: evidence from cathodoluminescence. European Journal of Mineralogy 4: 1391–1399Google Scholar
  80. White WB, Matsumura M, Linnehan DG, Furukawa T, Chandrasekhar BK (1986) Absorption and luminescence of Fei+ in single-crystal orthoclase. American Mineralogist 71: 1415–1419.Google Scholar
  81. Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentology 8: 1–69Google Scholar
  82. Zinkernagel U (1992) Vulkanogener Detritus in Sandsteinen des Oberkarbons in Norddeutschland. In: Frank F, Zinkernagel U, Füchtbauer H (eds) Zur Liefergebietsfrage der Sandsteine des Nordwestdeutschen Oberkarbons. DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle 384–8: 35–77Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Karl Ramseyer
  • Josef Mullis

There are no affiliations available

Personalised recommendations