Cathodoluminescence as a Tool in Gemstone Identification

  • Johann Ponahlo


The introduction of a method such as cathodoluminescence (CL) in gemmology calls for two prerequisites. First, the new method must be applied non-destructively, furnishing unambiguous results. Second, it has to enable a trained gemmologist to differentiate quickly and accurately between a natural gemstone, a synthetic or an artificial stone.


Natural Diamond Synthetic Diamond Chemical Vapor Deposition Diamond Chemical Vapor Deposition Diamond Film Table Facet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burns RC, Cvetkovic V, Dodge CN, Evans DJF, Rooney M-LT, Spear PM, Welbourn CM (1990) Growth-sector dependence of optical features in large synthetic diamonds. J. Cryst. Growth, 104, 257–279CrossRefGoogle Scholar
  2. Chhibber HL (1934) The mineral resources of Burma. Macmillan, LondonGoogle Scholar
  3. Collins AT, Spear PM (1983) The 1.40 eV and 2.56 eV centres in synthetic diamond. J. Phys. C: Solid State Phys., 16, 963–973CrossRefGoogle Scholar
  4. Collins A T, Kamo M, Sato Y (1989a) Optical centres related to nitrogen, vacancies and interstitials in polycrystalline diamond films grown by plasma-assisted chemical vapour deposition. J. Phys. D: Appl. Phys. 22, 1402–1405CrossRefGoogle Scholar
  5. Collins AT, Kamo M, Sato Y (1989b) Intrinsic and extrinsic cathodoluminescence from single-crystal diamonds grown by chemical vapour deposition. J. Phys.: Condens. Matter 1, 4029–4033CrossRefGoogle Scholar
  6. Crookes, W (1879) Contributions to molecular physics in high vacua. Phil. Trans. 170, 641–662CrossRefGoogle Scholar
  7. Deer WA, Howie RA, Zussman J (1978) Rock-Forming Minerals, 2 A, Single Chain Silicates, 2nd ed., LongmanGoogle Scholar
  8. Deutschbein O (1932) Die linienhafte Emission und Absorption der Chromphosphore. Ann. Phys. 14, Teil I: 712–728, Teil II: 729–754Google Scholar
  9. Field JE (1992) The properties of natural and synthetic diamond. Academic Press Ltd., London Gaal RAP (1977) Cathodoluminescence of gem materials. Gems & Gemology 15, 237–244Google Scholar
  10. Görz HN, Bhalla RJR, White E (1970) Detailed cathodoluminescence characterization of common silicates. Penn State Univ Spec Pub 70–101, 62–70Google Scholar
  11. Green CR (1981) Spectroscopic studies of transition metal luminescence centres in silicates. PhD Thesis, University ManchesterGoogle Scholar
  12. Hall AL (1925) Jade (massive garnet) from the Bushveld in the Western Transvaal. Trans. Geol. Soc. South Africa 27, 39–55Google Scholar
  13. Hanley PL, Kiflawi I, Lang AR (1977) On topographically identifiable sources of cathodoluminescence in natural diamonds. Phil. Trans. Roy. Soc. London, A 284, No. 1324, 329–368CrossRefGoogle Scholar
  14. Harlow GE (1994) Jadeitites, albitites and related rocks from the Montagua Fault Zone, Guatemala. J. metamorphic Geol. 12, 49–68CrossRefGoogle Scholar
  15. Henderson B and Imbusch GF (1989) Optical spectroscopy of inorganic solids. Oxford Science Publications, Clarendon PressGoogle Scholar
  16. Herzog LF, Marshall DJ, Babione RF (1970) The luminoscope–a new instrument for studying the electron-stimulated luminescence of terrestrial, extra-terrestrial and synthetic materials under the microscope. In: Space Science Applications of Solid State Luminescence Phenomena. J.N. Weber & E.White (eds.) MRL Pub1. 70–101. Pennsylvania State University, Univ. Park, PA, USA, 79–98Google Scholar
  17. Keverne R (1991) Jade. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  18. Lang AF, Meaden GM (1991) Complementary orientation-dependent distribution of 1.40 and 2.56 eV cathodoluminescence on vicinals on {111} in synthetic diamonds. J. Crystal Growth 108, 53–62CrossRefGoogle Scholar
  19. Lanver U, Lehman G (1978) Luminescence spectra of Mn (II) in different symmetries. J. Luminescence 17, 225–235CrossRefGoogle Scholar
  20. Marfunin AS (1979) Spectroscopy, Luminescence and Radiation Centres in Minerals. Springer Verlag New YorkCrossRefGoogle Scholar
  21. Gorobets BS, Walker G (1995) in Marfunin AS (ed): Advanced Mineralogy, Vol. 2, Methods and Instrumentation. Springer-Verlag, BerlinGoogle Scholar
  22. Marshall DJ (1988) Cathodoluminescence of Geological Materials. Unwyn Hyman, BostonGoogle Scholar
  23. Michel H (1914) Die künstlichen Edelsteine. 1st ed. Wilhelm Diebener G.m.b.H., LeipzigGoogle Scholar
  24. Michel H (1926) Die künstlichen Edelsteine. 2nd ed. Wilhelm Diebener G.m.b.H., LeipzigGoogle Scholar
  25. Morkovkina VF (1960) Jadeitites in the hyperbasites of the Polar Urals. Izvestia Akademia Nauk. SSSR, series geologia, 4Google Scholar
  26. Nickel E (1978) The present status of cathode luminescence as a tool in sedimentology. Minerals Sci. Engng. 10, (2), 73–100Google Scholar
  27. Pal’yanov Yu N, Malinovskyf IYu, Borzdov YuM, Khokhryakov AF, Chepurov AI, Godovikov AA, Sobolev NV (1990) Use of the “split sphere” apparatus for growing large diamond crystals without the use of a hydrolic press. Doklady Akademii Nauk SSR, Earth Science Section, 315, No. 5, 1221–1224Google Scholar
  28. Pochettino A (1913) Ober die Lumineszenzerscheinungen in Kristallen. Z. Kryst. 51, 113–131Google Scholar
  29. Ponahlo J (1988) Quantitative cathodoluminescence–a modern approach to gemstone recognition. J. Gemm. 21, 3, 182–193Google Scholar
  30. Ponahlo J (1989) Mikrospektralphotometrie der Edelstein-Kathodolumineszenz. Z. Dt. Gem-mol. Ges. 38, Nr. 2 /3, 63–84Google Scholar
  31. Ponahlo J (1990) Kathodolumineszenz-und Absorptionsspektren gelber Saphire. Z. Dt. Gem-mol. Ges. 39, Nr. 4, 225–228Google Scholar
  32. Ponahlo J (1992) Cathodoluminescence (CL) and CL spectra of De Beers’ experimental synthetic diamonds. J. Gemm., 23, No. 1, 3–17Google Scholar
  33. Ponahlo J (1993a) Kathodolumineszenz (KL) und KL-Spektren von Edelsteinen (Ausgewählte Beispiele), Teil I. Z. Dt. Gemmol. Ges. 42, Nr. 2 /3, 101–113Google Scholar
  34. Ponahlo J (1993b) Kathodolumineszenz (KL) und KL-Spektren von Edelsteinen (Ausgewählte Beispiele), Teil II. Z. Dt. Gemmol. Ges. 42, Nr. 4, 149–162Google Scholar
  35. Ponahlo J (1996) Cathodoluminescence: A fast, non-destructive method to distinguish between natural jadeite, dyed jadeite and dyed quartz simulants. JewelSiam April-May, 60–65Google Scholar
  36. Ponahlo J, Brandstätter F (1997) The cathodoluminescence (CL) of jade and it’s simulants. Poster session at the 26th International Gemmological Conference, Oberhambach, GermanyGoogle Scholar
  37. Ponahlo J, Haubner R, Lux B (1994) Cathodoluminescence ( CL) and CL spectra of microwave plasma-enhanced CVD Diamond. Microchimica Acta, 116, 143–156CrossRefGoogle Scholar
  38. Ponahlo J, Koroschetz T (1985) Quantitative Kathodolumineszenz–ein neues Verfahren zur Unterscheidung echter von synthetischen Smaragden und Rubinen. Z. Dt. Gemmol. Ges. 34, Nr. 3 /4, 132–142Google Scholar
  39. Robins LH, Cook LP, Farabaugh EN, Feldmann A (1989) Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapour deposition. Phys. Rev. B 39, 18, 13367–13377CrossRefGoogle Scholar
  40. Shida J (1997) Characteristics of cathodoluminescence for yellow diamonds of various types. 26th International Gemmological Conference, Oberhambach, GermanyGoogle Scholar
  41. Shigley JE, Fritsch E, Koivula JI, Sobolev NV, Malinovsky IY, Pal’yanov YA (1993) The gemological properties of Russian gem-quality synthetic yellow diamonds. Gems & Gemology, 29, No. 4, 228–247CrossRefGoogle Scholar
  42. Shigley JE, Fritsch E, Reinitz I, Moses TM (1995) A chart for the separation of natural and synthetic diamonds. Gems & Gemology, 31, No. 4, 256–264CrossRefGoogle Scholar
  43. Shigley JE, Moses TE, Reinitz I, Elen S, McClure SF, Fritsch E (1997) Gemological properties of near-colorless synthetic diamonds. Gems & Gemology, 33, No. 1, 42–53CrossRefGoogle Scholar
  44. Sippel RF (1965) Simple device for luminescence petrography. Rev. scient. Instrum. 36, II, 1556–1558CrossRefGoogle Scholar
  45. Suzuki S, Lang AR (1976) Internal structures of natural diamonds revealing mixed-habit growth. Diamond Research 1976, 39–47. Daniel P (ed.), Industrial Diamond Information Bureau, Ascot, EnglandGoogle Scholar
  46. Takayama M (1986) Mode of occurrence and significance of jadeite in the Kamuikotan metamorphic rocks, Hokkaido, Japan. J. metamorphic Geol. 4, 445–454CrossRefGoogle Scholar
  47. Tarashchan AN, Serebrennikov A, Platonov AN (1973) Features of lead ions luminescence in amazonite, in: Constitution and Properties of Minerals 7, 106–111Google Scholar
  48. Tarashchan AN (1978) Luminescence of minerals, naukova dumka, KiewGoogle Scholar
  49. Telfer DJ, Walker G (1975) Optical detection of Fei3+ in lunar plagioclase. Nature, 258, 694–695CrossRefGoogle Scholar
  50. Telfer DJ, Walker G (1978) Ligand field bands Mn2+ and Fei3+ luminescence centres and their site occupancy in plagioclase feldspars. Modern Geology, 6, 199–210Google Scholar
  51. Vishnevsky AS (1975) Sectorial structure and laminar growth of synthetic diamond crystals. J. Cryst. Growth 29, 296–300CrossRefGoogle Scholar
  52. Walker G (1983) Luminescence centres in minerals. Chemistry in Britain, 19, 824–831Google Scholar
  53. Walker G (1985) Ch.4 in « Chemical Bonding and Spectroscopy in Mineral Chemistry » (ed. Berry FL and Vaughan DJ), Chapman Hall, London, 103–140CrossRefGoogle Scholar
  54. Webster R (1983) Gems. Butterworth, London, 4th rev. edGoogle Scholar
  55. Welbourn CM, Rooney M-LT, Evans DJF (1989) A study of diamonds of cube and cube-related shape from the Jwaneng mine. J. Cryst. Growth, 94, 229–252CrossRefGoogle Scholar
  56. Welbourn CM, Cooper M, Spear PM (1996) De Beers natural versus synthetic diamond verification instruments. Gems & Gemology, 32, No. 3, 156–169CrossRefGoogle Scholar
  57. Woods GS, Lang AR (1975) Cathodoluminescence, optical absorption and X-ray topographic studies of synthetic diamonds. J. Cryst. Growth 28, 215–226CrossRefGoogle Scholar
  58. Wojtowicz AJ, Lempicki A (1990) Cr3+ in kyanite–a new mechanism of thermally enhanced E decay. J. Lumin., 46, 271–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Johann Ponahlo

There are no affiliations available

Personalised recommendations