Skip to main content

The Couple As(V) — As(III) as a Redox Indicator

  • Chapter
Redox

Abstract

The main focus of this textbook is on redox measurements using Pt-electrodes. The following chapter is about the calculation of EH or pε using analytical data of redox couples instead of direct measurements with electrodes. This approach is immediately derived from the Nernst equation as discussed in Chapter 1 which relates the redox potential to the ratio of an oxidised to a reduced species, i.e.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggett, J. & Aspell, A.C. (1976): The determination of arsenic(III) and total arsenic by atomic-absorption spectroscopy. Analyst 101: 341–347.

    Article  Google Scholar 

  • Aggett, J. & Kadwani, R. (1983): Anion-exchange method for speciation of arsenic and its application to some environmental analyses. Analyst 108: 1495–1499.

    Article  Google Scholar 

  • Aggett, J. & Kriegman, M.R. (1987): Preservation of arsenic(III) and arsenic(V) in samples of sediment interstitial water. Analyst 112: 153–157.

    Article  Google Scholar 

  • Anderson, R.K.; Thompson, M. & Culbard, E. (1986): Selective reduction of arsenic species by continuous hydride generation. Part I: Reaction media. Analyst 111: 1143–1152.

    Google Scholar 

  • Andreae, M.O. (1977): Determination of arsenic species in natural waters. Anal. Chem. 49: 820–823.

    Google Scholar 

  • Ball, J.W. & Nordstrom, D.K. (1991): WATEQ4F — User’s manual with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. USGS Open-File Rep 90–129, 185 pp.

    Google Scholar 

  • Bliefert, C. (1979): pH-Wert Berechnungen. VCH. Weinheim New York, 255 pp.

    Google Scholar 

  • Bökelen, A. & Niessner, R. (1992): Removal of arsenic from mineral water. Vom Wasser 78: 355–362.

    Google Scholar 

  • Braman, R.S.; Johnson, D.L.; Foreback, C.C.; Ammons, J.M. & Bricker, J.L. (1977): Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds. Anal. Chem. 49: 621–625.

    Google Scholar 

  • Brookins, D.G. (1988): Eh-pH diagrams for geochemistry. Springer. Berlin Heidelberg New York Tokio, 176 pp.

    Book  Google Scholar 

  • Brown, D.S. & Allison, J.D. (1987): An equilibrium metal speciation model: users manual. Env. Res. Lab. Office of Res. and Dev. US EPA Rep. EPA/600/3–87/012, 103 pp.

    Google Scholar 

  • Chakraborti, D.; Nichols, R.L. & Irgolic, K.J. (1984): Determination of arsenite and arsenate by differential pulse polarography. Fresenius Z. Anal. Chem. 319: 248–251.

    Google Scholar 

  • Cheam, V. & Agemian, H. (1980): Preservation of inorganic arsenic species at microgram levels in water samples. Analyst 105: 737–743.

    Article  Google Scholar 

  • Cherry, J.A.; Shaikh, A.U.; Tallman, D.E. & Nicholson, R.V. (1979): Arsenic species as an indicator of redox conditions in groundwater. J. Hydrol. 43: 373–392.

    Article  Google Scholar 

  • Cutter, L.S.; Cutter, G.A. & San Diego-Mcglone, M.L.C. (1991): Simultaneous determination of inorganic arsenic and antimony species in natural waters using selective hydride generation with gas chromatography/photoionization detection. Anal. Chem. 63: 1138–1142.

    Google Scholar 

  • Dove, P.M. & Rimstidt, J.D. (1985): The solubility and stability of scorodite, FeAs04 2H20. Am. Miner. 70: 838–844.

    Google Scholar 

  • Ebdon, L.; Hill, S.;Walton, P. & Ward, R.W. (1988): Coupled chromatography - atomic spectrometry for arsenic speciation — a comparitive study. Analyst 113: 1159–1165.

    Google Scholar 

  • Glaubig, R.A. & Goldberg, S. (1988): Determination of inorganic arsenic(III) and arsenic(III+V) using automated hydride-generation atomic-absorption spectrometry. Soil Sci. Soc. Am. J. 52: 536–537.

    Google Scholar 

  • Grabinski, A.A. (1981): Determination of arsenic(III), arsenic(V), monomethylarsonate, and dimethylarsinate by ion-exchange chromatography with flame-less atomic absorption spectrometry detection. Anal. Chem. 53: 966–968.

    Google Scholar 

  • Hansen, S.H.; Larsen, E.H.; Pritzl, G. & Cornett, C. (1992): Separation of seven arsenic compounds by high-performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 7: 629–634.

    Google Scholar 

  • Haswell, S.J.; O’neill, P. & Bancroft, K.C.C. (1985): Arsenic speciation in soil-pore waters from mineralized and unmineralized areas of South-West England. Talanta 32: 69–72.

    Article  Google Scholar 

  • Huang, Y.Q. & Wai, C.M. (1986): Extraction of arsenic from soil digests with dithiocarbamates for ICP-AES analysis. Commun. Soil Sci. Plant. Anal. 17: 125–133.

    Google Scholar 

  • Iverson, D.G.; Anderson, M.A.; Holm, T.H. & Stanforth, R.R. (1979): An evaluation of column chromatography and flameless atomic absorption spectrometry for arsenic speciation as applied to aquatic systems. Environ. Sci. Technol. 13: 1491–1494.

    Google Scholar 

  • Leonard, A. (1991): Arsenic. In: Merlan, E. (Ed.) Metals and their compounds in the environment. VCH. Weinheim, pp 751–774.

    Google Scholar 

  • Lindberg, R.D. & Runnells, D.D. (1984): Ground water redox reactions: An analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225: 925–927.

    Google Scholar 

  • Linder, P.W.; Torrington, R.G. & Williams, D.R. (1984): Analysis using glass electrodes. Open University Press. Milton Keynes, 148 pp.

    Google Scholar 

  • Masscheleyen, P.H.; Delaune, R.D. & Patrick JR., W.H. (1991): A hydride generation atomic absorption technique for arsine speciation. J. Environ. Qual. 20: 96–100.

    Google Scholar 

  • Naumov, G.B.; Ryzhenko, B.N. & Khodakovsky, I.L. (1974): Handbook of thermodynamic data (translated by Soleimani, J.). USGS Wat. Res. Div. Rep. WRD 74–001, 328 pp.

    Google Scholar 

  • Odanaka, Y.; Tsuchiya, N.; Matano, O. & Goto, S. (1985): Characterization of arsenic metabolites in rice plants treated with DSMA (disodium methanearsonate). J. Agric. Food Chem. 33: 757–763.

    Google Scholar 

  • Parkhurst, D.L.; Thorstenson, D.K. & Plummer, L.N. (1980): PHREEQE — A computer program for geochemical calculations. USGS Wat. Res. Invest. Rep. 80–96.

    Google Scholar 

  • Rai, D.J.; Zachara, J.M.; Schwab, A.S.; Schmidt, R.; Girvin, D. & Rogers, J. (1984): Chemical attenuation rates, coefficients, and constants in leachate migration. Vol I: A critical review. EPRI-EA-3356-Vol 1, 318 pp.

    Google Scholar 

  • Rude, T.R. (1996): Beiträge zur Geochemie des Arsens. Karlsruher Geochem. H. 10: 206 pp.

    Google Scholar 

  • Schoeller, H. (1962): Les eaux souterraines. Masson. Paris, 642 pp.

    Google Scholar 

  • Spycher, N.F. & Reed, M.H. (1989): Evolution of a Broadlands-type epithermal ore fluid along alternative P-T paths: Implications for the transport and deposition of base, precious, and volatile metals. Econ. Geol. 84: 328–359.

    Google Scholar 

  • Stummeyer, J.; Harazim, B. & Wippermann, T. (1995): Arsen-Speziation mittels HPLCHydrid-AAS Kopplung. In: Welz, B. (Ed.) Colloquium Analytische Atomspektrometrie. Bodenseewerk Perkin-Elmer. Überlingen. pp 425–428.

    Google Scholar 

  • Tallman, D.E. & Shaikh, A.U. (1980): Redox stability of inorganic arsenic(III) and arsenic(V) in aqueous solution. Anal. Chem. 52: 196–199.

    Google Scholar 

  • Vink, B.W. (1996): Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol. 130: 21–30.

    Google Scholar 

  • Wageman, D.D.; Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L. & Nuttall, R.L. (1982): The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 11 Suppl. 2. ACS AIP NBS. Washington, 392 pp.

    Google Scholar 

  • weigert, P. & Sappl, A. (1983): Speciation of As(111) and As(V) in biological tissue. Fresenius Z. Anal. Chem. 316: 306–308.

    Google Scholar 

  • Wohnlich, S.; Vogelgsang, A.; Glasser, W. & Dohrmann, H. (1997): Untersuchung hydrogeochemischer Prozesse am Beispiel der Braunkohletagebaukippe Zwenkau/Cospuden (Mitteldeutschland). In: Arbeitsgruppe des GBL-Gemeinschaftsvorhabens (Eds.) 3. GBLKolloquium. Stuttgart. pp 98–103.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rüde, T.R., Wohnlich, S. (2000). The Couple As(V) — As(III) as a Redox Indicator. In: Schüring, J., Schulz, H.D., Fischer, W.R., Böttcher, J., Duijnisveld, W.H.M. (eds) Redox. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04080-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04080-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08581-9

  • Online ISBN: 978-3-662-04080-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics