Skip to main content

Redox Reactions, Multi-Component Stability Diagrams and Isotopic Investigations in Sulfur- and Iron-Dominated Groundwater Systems

  • Chapter
Redox

Abstract

Redox reactions of sulfur are very common in groundwater, surface water and in the marine environment (Nordstrom et al., 1979; Froelich et al., 1979; Leuchs, 1988; Alpers & Blowes, 1994; Van Berk & Wisotzky, 1995; Stumm & Morgan, 1996). The input of an oxidant (02, NO3 , Fe(III)) into a system which contains sulfide minerals leads to mobilising reactions (increase of mineralisation and decrease of pH). Thus, the reaction of oxygen or nitrate with sulfide-containing soils is responsible for sulfuric acid release and increased mobility of metals. Pyrite (FeS2) as an important sulfide mineral can be found in metallic ores, black shales and in overburden sediments of lignite and hard coal deposits. Pyrite oxidation processes include redox reactions of sulfur and iron. These reactions are of high importance for the groundwater quality in lignite mining areas where there are massive occurrences of groundwater in porous media. High sulfate and iron concentrations in the groundwater of the dump aquifers corroborate the dominance of pyrite oxidation in this system. This characterisation is necessary to check the plausibility of redox measurements in the investigated system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers, C.N. & Blowes, D.W. (1994): Environmental Geochemistry of Sulfide Oxidation. Am. Chem. Soc., Washington DC.

    Google Scholar 

  • Appelo, C.A.J. & Willemsen, A. (1987): Geochemical Calculations and Observations on Salt Water Intrusions, I — A Combined Geochemical/Mixing Cell Model. J. Hydrol.: 94: 313–330.

    Article  Google Scholar 

  • Barbaro, J.R.; Barker, J.F.; Lemon, L.A. & Mayfield, C.I. (1992): Biotransformation of BTEX under Anaerobic, Denitrifying Conditions: Field and Laboratory Observations. J. Cont. Hydrology. 11: 245–272.

    Article  Google Scholar 

  • Barker, J.F.; Patrick, G.C. & Major, D. (1987): Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer. Ground Water Monitoring Review 7,1: 64–71.

    Google Scholar 

  • Bigham, J.M.; Schwertmann, U.; Traina, S.J.; Winland, R.L. & Wolf, M. (1996): Schwertmannite and the Chemical Modeling of Iron in Acid Sulfate Waters. Geochim. Cosmochim. Acta. 60: 2111–2121.

    Article  Google Scholar 

  • Brookins, D.G. (1987): Eh-pH Diagrams for Geochemistry. Springer, Berlin.

    Google Scholar 

  • Brumsack, H.-J. (1981): A Simple Method for the Determination of Sulfide-and Sulfate-Sulfur in Geological Materials by Using Different Temperatures of Decomposition. Z. Anal. Chem. 307: 206–207.

    Google Scholar 

  • Chambers, L.A. & Trudinger, P.A. (1979): Microbiological Fractionation of Stable Sulfur Isotopes: A Review and Critique. Geomicrobiology Journal 1: 249–293.

    Google Scholar 

  • Cornell, R.M. & Schwertmann, U. (1996): The Iron Oxides - Structure, Properties, Reactions, Occurrence and Uses. VCH Verlagsgesellschaft mbH, Weinheim.

    Google Scholar 

  • Friese, K.; Hupfer, M. & Schultze, M. (1998): Chemical Characteristics of Water and Sediment in Acid Mining Lakes of the Lusatian Lignite District. In: Geller, W.; Klapper, H. & Salomons, W. (Eds.): Acidic Mining Lakes. Springer, Berlin, pp 25–45.

    Chapter  Google Scholar 

  • Froelich, P.N.; Klinkhammer, G.P.; Bender, M.L.; Luedtke, N.A.; Heath, G.R.; Cullen, D.; Dauphin, P.; Hammond, D.; Hartmann, B. & Maynard, V. (1979): Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.

    Article  Google Scholar 

  • Garrels, R.M. & Christ, C.L. (1965): Solutions, Minerals, and Equilibria. Harper and Row, New York

    Google Scholar 

  • Hoffmann, K. (1993): Altlastenproblematik auf ehemaligen Zechen-und Kokereistandorten. In: WIGGERING, H. (Ed.): Steinkohlenbergbau–Steinkohle als Grundstoff, Energieträger und Umweltfaktor. Ernst und Sohn, Berlin, pp 186–203.

    Google Scholar 

  • Leuchs, W. (1988): Vorkommen, Abfolge und Auswirkungen anoxischer Redoxreaktionen in einem pleistozänen Porengrundwasserleiter. Besondere Mitteilungen zum Dtsch. Gewässerkdl. Jb. 52: 106 p.

    Google Scholar 

  • Lindberg, R.D. & Runnels, D.D. (1984): Ground Water Redox Reactions: An Analysis of Equilibrium State Applied to Eh Measurements and Geochemical Modelling. Science 225: 925–927

    Google Scholar 

  • Major, D.W.; Mayfield, C.I. & Barker, J.F. (1988): Biotransformation of Benzene by Denitrification in Aquifer Sand. Ground Water 26: 8–14.

    Article  Google Scholar 

  • Nordstrom, D.K.; Jenne, E.A. & Ball, J.W. (1979): Redox Equilibria of Iron in Acid Mine Waters. In Jenne EA [Ed.] Chemical Modelling in Aqueous Systems. Am. Chem. Soc. Symp. Ser. 93: 51–79.

    Chapter  Google Scholar 

  • Patterson, B.M.; Pribac, F.; Barber, C.; Davis, G.B. & Gibbs, R. (1993): Biodegradation and Retardation of PCE and BTEX Compounds in Aquifer Material from Western Australia Using Large-Scale Columns. J. Cont. Hydrology 14: 261–278.

    Article  Google Scholar 

  • Pietsch, W. (1979): Zur hydrochemischen Situation der Tagebauseen des Lausitzer Braunkohlen-Reviers. Arch. Naturschutz Landschaftsforsch. 19: 97–115.

    Google Scholar 

  • Schmitt, R.; Langguth, H.R.; Püttmann, W.; Rohns, H.P.; Eckert, P. & Schubert, J. (1996): Biodegradation of Aromatic Hydrocarbons under Anoxic Conditions in a Shallow Sand and Gravel Aquifer of the Lower Rhine Valley, Germany. Org. Geochem. 25: 41–50.

    Article  Google Scholar 

  • Sigg, L. & Stumm, W. (1994): Aquatische Chemie. Verlag der Fachvereine Zürich, Zürich

    Google Scholar 

  • Stumm, W. & Morgan, J.J. (1996): Aquatic Chemistry — Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons, New York.

    Google Scholar 

  • Van Berk, W. & Wisotzky, F. (1995): Sulfide Oxidation in Brown Coal Overburden and Chemical Modelling of Reactions in Aquifers Influenced by Sulfide Oxidation. Environmental Geology 26: 192–196.

    Article  Google Scholar 

  • Wisotzky, F. (1994): Untersuchungen zur Pyritoxidation in Sedimenten des Rheinischen Braunkohlenreviers und deren Auswirkungen auf die Chemie des Grundwassers. Besondere Mitteilungen zum Dtsch. Gewässerkl. Jb. 58: p 153.

    Google Scholar 

  • Wisotzky, F. & Eckert, P. (1997): Sulfat-dominierter BTEX-Abbau im Grundwasser eines ehemaligen Gaswerksstandortes. Grundwasser 2,1: 11–21.

    Google Scholar 

  • Wisotzky, F. (1998a): Chemical Reactions in Aquifers Influenced by Sulfide Oxidation and in Sulfide Oxidation Zones. In: GELLER, W.; KLAPPER, H. & SALOMONS, W. (Eds.): Acidic Mining Lakes. Springer, Berlin, pp 223–236.

    Chapter  Google Scholar 

  • Wisotzky, F. (1998b): Hydrogeochemische Modellierung von abbauwirksamen Redoxreaktionen bei einer BTEX-Belastung des Grundwassers. In: Grambow, B. & Fanghanel, T. (Eds.): Geochemische Modellierung–Radiotoxische und chemisch-toxische Stoffe in natürlichen aquatischen Systemen. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte FZKA 6051, pp 149–160.

    Google Scholar 

  • Wisotzky, F. (1998c): Assessment of the Extent of Sulfate Reduction in Lignite Mining Dumps using Thermodynamic Equilibrium Models. Water, Air, and Soil Pollution 108: 285–296.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wisotzky, F. (2000). Redox Reactions, Multi-Component Stability Diagrams and Isotopic Investigations in Sulfur- and Iron-Dominated Groundwater Systems. In: Schüring, J., Schulz, H.D., Fischer, W.R., Böttcher, J., Duijnisveld, W.H.M. (eds) Redox. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04080-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04080-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08581-9

  • Online ISBN: 978-3-662-04080-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics