Advertisement

Redox pp 1-12 | Cite as

Redox Potential Measurements in Natural Waters: Significance, Concepts and Problems

Chapter

Abstract

The characterisation of redox conditions in natural aquatic systems is both of scientific and of practical significance. The biogeochemical processes in anoxic systems have been studied in many instances in lakes, sediments and groundwater (e.g. Heron et al., 1994; Urban et al., 1997). To which extent the redox reactions occur in a certain system and which reduced species are present, such as reduced iron, manganese(II) and sulfide, is significant with regard to many practical problems, like use of groundwater for drinking water or remediation of contaminated sites. With regard to groundwater, the redox conditions downstream of landfills, which release large amounts of degradable compounds, need to be understood and characterised (Amirbahman et al., 1998; Heron & Christensen, 1995).

Keywords

Natural Water Redox Reaction Redox Couple Redox Species Municipal Solid Waste Landfill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amirbahman, A.; Schönenberger, R.; Johnson, C.A. & Sigg, L. (1998): Aqueous phase biogeochemistry of a calcareous aquifer system downgradient from a municipal solid waste landfill ( Winterthur, Switzerland). Environ. Sci. Technol. 32: 1933–1940.CrossRefGoogle Scholar
  2. Bard, A.J. & Faulkner, L.R. (1980): Electrochemical methods; fundamentals and applications. John Wiley & Sons, New York.Google Scholar
  3. Bockris, J.O.M. & Reddy, A.K.N. (1973): Modern electrochemistry. Plenum/Rosetta, New York.CrossRefGoogle Scholar
  4. Boller, M.; Gujer, W. & Tschui, M. (1994): Parameters affecting nitrifying biofilm reactors. Wat. Sci. Tech. 29: 1–11.Google Scholar
  5. Diem, D. & Stumm, W. (1984): Is dissolved Mn2+ being oxidized by 02 in absence of Mn-bacteria or surface catalysts? Geochim. Cosmochim. Acta 48: 1571–1573CrossRefGoogle Scholar
  6. Grenthe, I.; Stumm, W.; Laaksuharju, M.; Nilsson, A.-C. & WIKBERG, P. (1992): Redox potentials and redox reactions in deep groundwater systems. Chem. Geol. 98: 131–150.CrossRefGoogle Scholar
  7. Hamilton-Taylor, J. & Davison, W. (1995): Redox-driven cycling of trace elements in lakes. In: LERMAN, A.; IMBODEN, D.M. & GAT, J.R. (Eds.): Physics and chemistry of lakes. Springer-Verlag, Berlin. pp 217–263.CrossRefGoogle Scholar
  8. Heron, G. & Christensen, T.H. (1995): Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer ( Vejen, Denmark). Environ. Sci. Technol. 29: 187–192.CrossRefGoogle Scholar
  9. Heron, G.; Christensen, T.H. & Tjell, J.C. (1994): Oxidation capacity of aquifer sediments. Environ. Sci. Technol. 28: 153–158.CrossRefGoogle Scholar
  10. Kempton, J.H.; Lindberg, R.D. & Runnells, D.D. (1990): Numerical modeling of platinum Eh measurements by using heterogeneous electron-transfer kinetics. In: MELCHIOR, D.C. & BASSETT, R.L. (Eds.): Chemical modeling of aqueous systems II. ACS, Washington DC. pp 339–349.CrossRefGoogle Scholar
  11. Kuhn, A. & SIGG, L. (1993): Arsenic cycling in eutrophic Lake Greifen, Switzerland: Influence of seasonal redox processes. Limnol. Oceanogr. 38: 1052–1059.CrossRefGoogle Scholar
  12. Lindberg, R.D. & Runnells, D.D. (1984): Ground water redox reactions: an analysis of equi- librium state applied to Eh measurements and geochemical modeling. Science 225: 925–927.CrossRefGoogle Scholar
  13. Macalady, D.L.; Langmuir, D.; Grundl, T. & Elzerman, A. (1990): Use of model-generated Fe3+ ion activities to compute Eh and ferric oxyhydroxide solubilities in anaerobic systems. In: Melchior, D.C. & Bassett, R.L. (Eds.): Chemical modeling of aqueous systems II. ACS, Washington DC. pp 350–367.CrossRefGoogle Scholar
  14. Peiffer, S.; Klemm, O.; Pecher, K. & Hollerung, R. (1992): Redox measurements in aqueous solutions - a theoretical approach to data interpretation, based on electrode kinetics. J. Cont. Hydrol. 10: 1–18.CrossRefGoogle Scholar
  15. Schwarzenbach, R.P.; Angst, W.; Holliger, C.; HUG, S.J. & Klausen, J. (1997): Reductive transformations of anthropogenic chemicals in natural and technical systems. Chimia 51: 908–914.Google Scholar
  16. Sigg, L.; Johnson, C.A. & Kuhn, A. (1991): Redox conditions and alkalinity generation in a seasonally anoxic lake (Lake Greifen). Mar. Chem. 36: 9–26.CrossRefGoogle Scholar
  17. Stumm, W. & Morgan, J.J. (1970): Aquatic chemistry. Wiley-Interscience, New York. STUMM, W. & MORGAN, J.J. (1996): Aquatic chemistry. Wiley-Interscience, New York. Sulzberger, B.; Canonica, S.; EGLI, T.; GIGER, W.; KLAUSEN, J. & VON GUNTEN, U. (1997): Oxidative transformations of contaminants in natural and technical systems. Chimia 51: 900–907.Google Scholar
  18. Urban, N.R.; Dinkel, C. & Wehrli, B. (1997): Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers. Aquat. Sci. 59: 1–25.CrossRefGoogle Scholar
  19. Von Langen, P.J.; Johnson, K.S.; Coale, K.H. & Elrod, V.A. (1997): Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations. Geochim. Cosmochim. Acta 61: 4945–4954.CrossRefGoogle Scholar
  20. Whitfield, M. (1974): Thermodynamic limitations on the use of the platinum electrode EH measurements. Limnol. Oceanogr. 19: 857–865.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • L. Sigg

There are no affiliations available

Personalised recommendations