Skip to main content

Introduction

  • Chapter
Plasma Physics

Part of the book series: Springer Series on Atoms+Plasmas ((SSAOPP,volume 8))

  • 796 Accesses

Abstract

The three states of matter, solid, liquid and gas, are well-known to us. As the temperature is elevated, solid is liquefied and liquid is evaporated to form a gaseous state. If we further increase the temperature, the molecules constituting the gas are decomposed into atoms and the atoms are then decomposed into electrons and positively charged ions. The degree of ionization increases as the temperature rises. For the case of hydrogen gas at normal pressure, the ionization becomes almost complete at about (2 ~ 3) × 104K. The ionized gas formed in this way is called high-temperature plasma. It consists of a large number of negatively charged light electrons and positively charged heavy ions, both electrons and ions moving with high speed corresponding to high temperature. The net negative charge of the electrons cancels the net positive charge of the ions in the plasma. This is called the overall charge neutrality of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Tonks, I. Langmuir: Oscillations in Ionized Gases and Note on Oscillations in Ionized Gases, Phys. Rev. 33, 195, 990 (1929)

    Article  ADS  Google Scholar 

  2. A.A. Vlasov: Zh. Eksp. Teor. Fiz 8, 291 (1938)

    MATH  Google Scholar 

  3. L.D. Landau: On the Vibration of the Electronic Plasma, J. Phys. (USSR) 10, 25 (1946)

    MATH  Google Scholar 

  4. J.E. Mayer: The Theory of Ionic Solutions, J. Chem. Phys. 18, 1426 (1950)

    Article  ADS  Google Scholar 

  5. R. Balescu: Irreversible Processes in Ionized Gases, Phys. Fluids 3, 52 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Lenard: On Bogoliubov’s Kinetic Equation for a Spatially Homogeneous Plasma, Ann. Phys. 10, 390 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R.L. Guernsey: Kinetic Equation for a Completely Ionized Gas, Phys. Fluids 5, 322 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Alfven: Cosmical Electrodynamics (Oxford University Press 1951)

    Google Scholar 

  9. T.G. Cowling: Magnetohydrodynamics (Adam Hilger, Bristol 1976)

    MATH  Google Scholar 

  10. S.I. Braginskii: Reviews of Plasma Physics, ed. by M.A. Leontovich (Consultants Bureau, New York 1965) p. 205

    Google Scholar 

  11. R.Z. Sagdeev, A.A. Galeev: Nonlinear Plasma Theory (Benjamin, New York 1969)

    MATH  Google Scholar 

  12. R.C. Davidson: Methods in Nonlinear Plasma Theory (Academic, New York 1972)

    Google Scholar 

  13. V.N. Tsytovich: Nonlinear Effects in Plasma (Plenum, New York 1970)

    Book  Google Scholar 

  14. V.I. Karpman: Nonlinear Waves in Dispersive Media (Pergamon, Oxford 1975)

    Google Scholar 

  15. J. Weiland, H. Wilhelmsson: Coherent Nonlinear Interaction of Waves in Plasmas (Pergamon, Oxford 1977)

    Google Scholar 

  16. C.F. Kennel, L.J. Lanzerotti, E.N. Parker (eds.): Solar System Plasma Physics, Vol. I, II, III (North-Holland, Amsterdam 1979)

    Google Scholar 

  17. D.B. Melrose: Plasma Astrophysics (Gordon and Breach, New York 1980)

    Google Scholar 

  18. Proc. of the Second United Nations Int. Conf. on the Peaceful Uses of Atomic Energy in Geneva: Theoretical and Experimental Aspects of Controlled Nuclear Fusion, Vol. 31; Controlled Fusion Devices, Vol. 32 (United Nations Publication, Geneva 1958)

    Google Scholar 

  19. Proceedings of IAEA International Conference on Plasma Physics and Controlled Thermonuclear Fusion Research, Novosibirsk 1968, Vol. 1, p. 157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishikawa, K., Wakatani, M. (2000). Introduction. In: Plasma Physics. Springer Series on Atoms+Plasmas, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04078-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04078-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08465-2

  • Online ISBN: 978-3-662-04078-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics