Skip to main content

Smart Ferroelectric Ceramic/Polymer Composite Sensors

  • Chapter
Polymer Sensors and Actuators

Part of the book series: Macromolecular Systems — Materials Approach ((MACROSYSTEMS))

Abstract

Smart (i.e. intelligent) materials have the ability to respond to changes in their environment and actuate a desired response in an advantageous manner. There are two schools of thought in the development of smart materials. The first one uses components to perform different functions that are then integrated into a single device. The second approach is to develop polar materials that can both sense and actuate. Ferroelectric materials can convert mechanical and thermal energies into electrical signals (i.e. piezo-and pyroelectric effects). These materials also exhibit the converse effects. It is this dual functional ability that allows them to perform both the sensing and actuating functions. These materials are thus intrinsically smart materials whose crystal structures are asymmetric, i.e. they lack an inversion centre. Of the 32 crystal classes, 11 have a centre of symmetry and in one a combination of symmetries effectively provides such a symmetry that endows them with no polar property. Thus only 20 classes can provide an asymmetric crystal structure and the materials belonging to these classes are piezoelectric. Ten of these 20 classes have a unique polar axis and they possess a spontaneous polarisation (i.e. electric moment for unit volume) and are pyroelectric. A restricted group of these pyroelectrics have the further property of being ferroelectric. There is as yet no general basis for deciding whether a material will be ferroelectric. However, a crystal is regarded as ferroelectric when it has two or more orientational stages (in the absence of an electric field), which can be switched from one state to another by an electric field. These two orientational states have identical crystal structures but differ only in electric polarisation vector at zero electric field. Thus there are no ferroelectrics that are not pyroelectric and there are no pyroelectrics which are not piezoelectric. However, the converse is not true, i.e. not all piezoelectrics are pyroelectric and all pyroelectrics are not ferroelectric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffe B, Roth RS, Marzullo S (1955) J Res National Bureau of Standards 55: 239

    Article  CAS  Google Scholar 

  2. Ouchi H (1965) J Am Ceram Soc 48: 630

    Article  CAS  Google Scholar 

  3. Ueda I, Ikegami S (1968) Jap J Appl Phys 7: 236

    Article  CAS  Google Scholar 

  4. Yamashita Y, Yokoyama K, Honda H, Takahashi J (1981) Proc FMA-3 Jap J Appl Phys 20 (Suppl 4): 1983

    Google Scholar 

  5. Jiminez B (1988) Ferroelectrics 81: 265

    Article  Google Scholar 

  6. Lovinger A (1983) Science 220: 1115

    Article  CAS  Google Scholar 

  7. Furukawa T, Wang TT (1988) In: Herbert JM, Glass AM (eds) Applications of ferroelectric polymers. Blackie, Glasgow, p 6

    Google Scholar 

  8. Furukawa T (1989) Phase Transitions Section B 18: 143

    Article  CAS  Google Scholar 

  9. Furukawa T, Wen JX (1984) Jap J Appl Phys 23: 677

    Article  CAS  Google Scholar 

  10. Takeuchi HS, Jyonura HS, Nakaya C (1985) Jap J Appl Phys 24 (Suppl 2): 36

    CAS  Google Scholar 

  11. Dias CJ, Das-Gupta DK (1994) Piezo-and pyroelectric ceramic-polymer composites. In Das-Gupta DK (ed) Key engineering materials 92–93 Trans Tech, Switzerland, chap 8

    Google Scholar 

  12. Dias CJ, Das-Gupta DK (1996) IEEE Trans DEI 3: 706

    Article  CAS  Google Scholar 

  13. Dias CJM (1994) Ferroelectric composites for pyro-and piezoelectric applications. PhD Thesis, University of Wales, UK

    Google Scholar 

  14. Wenger MP (1997) Ferroelectric ceramic/polymer composite sensor for in-situ acoustic emission detection. PhD Thesis, University of Wales, UK

    Google Scholar 

  15. Smith WA (1993) IEEE Ultrason Ferroelec Frq Contr 40: 41

    Article  CAS  Google Scholar 

  16. Chilton JA (1991) GEC Review 6: 156

    Google Scholar 

  17. Smits GJ (1976) IEEE Trans Sonics & Ultrasonics SU-23:393

    Google Scholar 

  18. Das-Gupta DK (1995) Piezoelectric and pyroelectric materials. In: Petty MC, Bryce MR, Bloor D (eds) An introduction to molecular electronics. Edward Arnold, London, chap 3

    Google Scholar 

  19. Nye JF (1957) Physical properties of crystals. Clarendon Press, Oxford, p 110

    Google Scholar 

  20. Moulson AJ, Herber JM (1990) Electroceramics material properties applications. Chapman and Hall, London, chap 6

    Google Scholar 

  21. Kepler RG, Anderson RA (1978) J Appl Phys 49: 4490

    Article  CAS  Google Scholar 

  22. Collins RE (1980) J Appl Phys 51: 2973

    Article  CAS  Google Scholar 

  23. Lang SB, Das-Gupta DK (1986) J Appl Phys 59: 2151

    Article  CAS  Google Scholar 

  24. Jaffe H (1969) IEEE Trans Electron Devices ED16:557

    Google Scholar 

  25. Shaikh A, Vest RW, Vest GM (1989) IEEE Trans Ultrasonics Ferroelectrics and Frequency Control 3: 407

    Article  Google Scholar 

  26. Duren P, Fernandez JF, Recio P, Mourc C (1990) Mat and Manuf Processes 5: 427

    Article  Google Scholar 

  27. Cross LE, Härdtl (1980) Ferroelectrics. In: Encyclopedia of chemical technology. Wiley, New York, p1

    Google Scholar 

  28. Kingery WD, Bowen HK, Uhlman DR (1976) Introduction to ceramics. Wiley, New York, chap 2, p 25

    Google Scholar 

  29. Worsing W, Lubitz K, Mohaupt J (1989) IEEE Ultrason Ferroelec Contr 3 6: 424

    Article  Google Scholar 

  30. Gallego-Juarez JA (1989) J Phys E Sci Instrum 22: 804

    Article  CAS  Google Scholar 

  31. Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) J Appl Phys 62: 3331

    Article  CAS  Google Scholar 

  32. Ichinose N, Hirao Y, Nakamoto M, Yamashita Y (1985) Jap J Appl Phys 24 (Suppl 3): 178

    CAS  Google Scholar 

  33. Yamashita Y, Yoshida S, Takahashi T (1983) Jap J Appl Phys 22 (Suppl 2): 40

    Article  CAS  Google Scholar 

  34. Lovinger AJ (1981) In: Bassett DC (ed) Polyvinylidenefluoride, development in crystalline polymer-1. Applied Science, London, p 109

    Google Scholar 

  35. Das-Gupta DK (1991) Ferroelectrics 118: 165

    Article  CAS  Google Scholar 

  36. Das-Gupta DK, Doughty K (1977) Appl Phys Lett 118: 165

    Google Scholar 

  37. Neagle D, Yoon DY, Broadhurst MG (1978) Macromolecules 11: 1297

    Article  Google Scholar 

  38. Das-Gupta DK, Doughty K (1978) J Appl Phys 49: 4601

    Article  CAS  Google Scholar 

  39. Davis GT, McKinney JE, Broadhurst MG, Roth SC (1978) J Appl Phys 49: 4998

    Article  CAS  Google Scholar 

  40. Southgate PD (1976) Appl Phys Lett 28: 250

    Article  CAS  Google Scholar 

  41. Luongo JP (1972) J Polym Sci A-2 10: 1119

    Article  CAS  Google Scholar 

  42. Wada Y (1982) In: Mort J, Pfister G (eds) Electronic properties of polymers. Wiley, New York, p 109

    Google Scholar 

  43. Das-Gupta DK, Doughty K (1978) J Phys D Appl Phys 11: 2415

    Article  CAS  Google Scholar 

  44. Weinhold S, Litt MH, Lando JB (1980) Macromolecules 13: 1316

    Article  Google Scholar 

  45. Takahashi Y, Tadokoro H (1980) Macromolecules 13: 1316

    Article  CAS  Google Scholar 

  46. Lovinger AJ (1982) Macromolecules 15: 40

    Article  CAS  Google Scholar 

  47. Davis GT (1988) In: Wang TT, Herbert IM, Glass AM (eds) The applications of ferroelectric polymers. Blackie, London, chap 4

    Google Scholar 

  48. Furukawa T, Date M, Fukada E (1980) J Appl Phys 51: 1135

    Article  CAS  Google Scholar 

  49. Keppler RG, Anderson RA (1978) J Appl Phys 49: 1232

    Article  Google Scholar 

  50. Furukawa T, Date M, Ohuchi M, Chiba A (1984) J Appl Phys 56: 1481

    Article  CAS  Google Scholar 

  51. Takasi Y, Odajema A, Wang TT (1988) J Appl Phys 60: 2920

    Article  Google Scholar 

  52. Yagi T, Tatemoto M (1979) Polym J 11: 429

    Article  CAS  Google Scholar 

  53. Mopsik FI, Broadhurst MJ (1975) J Appl Phys 46: 4204

    Article  Google Scholar 

  54. Braodhurst MG, Davis GT, McKinney GE, Collins RE (1978) J Appl Phys 49: 4992

    Article  Google Scholar 

  55. Wada Y, Hayakawa R (1981) Ferroelectrics 32: 115

    Article  CAS  Google Scholar 

  56. Hayakawa Wada Y (1976) Report Prog Polym Phys Jpn 19: 321

    Google Scholar 

  57. Doll WN, Lando JB (1970) J Macromol Sci-Phys 43: 4293

    Google Scholar 

  58. De Rossi D (1994) Proc 2nd European Conf on Smart structures and Materials. Glasgow, p 19

    Google Scholar 

  59. Purvis CK, Taylor PL (1983) J Appl Phys 54: 1021

    Article  CAS  Google Scholar 

  60. Tashiro K, Kobayashi M, Tadokoro M, Fukada E (1980) Macromolecules 13: 691

    Article  CAS  Google Scholar 

  61. Al-Jishi R, Taylor P (1985) J Appl Phys 57: 897

    Article  CAS  Google Scholar 

  62. Al-Jish R, Taylor P (1985) J Appl Phys 57: 902

    Article  Google Scholar 

  63. Furukawa T, Wen JX, Suzuki K, Takashina Y, Date M (1984) J Appl Phys 56: 829

    Article  CAS  Google Scholar 

  64. Wen JX (1985) Polym J 17: 399

    Article  CAS  Google Scholar 

  65. Tasaka S, Miyata S (1985) J Appl Phys 57: 906

    Article  CAS  Google Scholar 

  66. Koga K, Ohigashi H (1986) J Appl Phys 59: 2142

    Article  CAS  Google Scholar 

  67. Yagi T, Tatemoto M, Sako J (1980) Polym J 12: 857

    Article  Google Scholar 

  68. Baner S (1996) J Appl Phys 80: 5531

    Article  Google Scholar 

  69. Miyata M, Yoshikawa S, Tasaka S, Ko M (1980) Polym J 12: 857

    Article  CAS  Google Scholar 

  70. Newnham RE, Trolier-McKinstry SE (1978) Mater Res Bull 13: 525

    Article  CAS  Google Scholar 

  71. Newnham RE, Trolier-McKinstry SE (1990) Ceramic Dielectrics: Composition Processing and Properties 8: 235

    CAS  Google Scholar 

  72. Van Suchtelen J (1978) Philips Res Rep 27: 28

    Google Scholar 

  73. Newnham RE (1985) Tap J Appl Phys 24 (Suppl 24/2): 16

    CAS  Google Scholar 

  74. Newnham RE (1986) Ferroelectrics 68: 1

    Article  CAS  Google Scholar 

  75. Furukawa T, Ishida K, Fukada E (1979) J Appl Phys 50: 4904

    Google Scholar 

  76. Yamazaki H, Kitayma T (1981) Ferroelectrics 33: 147

    Article  CAS  Google Scholar 

  77. Hanner KA, Safari A, Newnham RE, Runt J (1989) Ferroelectrics 100: 255

    Article  CAS  Google Scholar 

  78. Wenger MP, Blanas P, Dias CJ, Shuford RJ, Das-Gupta DK (1996) Ferroelectrics 187: 75

    Article  CAS  Google Scholar 

  79. Egusa S, Iwasawa (1994) Proc 2nd Int Conf on Intelligent Materials

    Google Scholar 

  80. Sa-Gong G, Safari A, Newnham RM (1986) IEEE 6th Int Symp on Appl Ferroelectrics (ISAF’86), Pennsylvania, USA, p 281

    Chapter  Google Scholar 

  81. Lee M-H, Halliyal A, Newnham RE (1988) Ferroelectrics 87: 71

    Article  Google Scholar 

  82. Waller D, Safari A (1988) Ferroelectrics 87: 187

    Article  Google Scholar 

  83. Savakas HP, Klicker KA, Newnham RE (1980) Mater Res Bull 16: 677

    Article  Google Scholar 

  84. Smith WA (1989) IEEE Ultrasonics Symposium, p 755

    Google Scholar 

  85. Skinner DP, Newnham RE, Cross LE (1978) Mat Res Bull 13: 599

    Article  CAS  Google Scholar 

  86. Silk MG (1984) Ultrasonic transducers for non-destructive testing. Adam Liger, Bristol, chap 2, p 24

    Google Scholar 

  87. Guraraj TR, Xu QC, Ramachandran AR, Halliyal A, Newnham RE (1986) Proc IEEE Ultrasonic Symposium, p 703

    Google Scholar 

  88. Merz WJ (1956) J Appl Phys 27: 938

    Article  CAS  Google Scholar 

  89. Landauer R, Young DR, Drugard ME (1956) J Appl Phys 27: 752

    Article  CAS  Google Scholar 

  90. Gururaj TR, Schulze WA, Cross LE, Newnham RE, Auld BA, Wang YJ (1985) IEEE Trans on Sonics and Ultrasonics SU-32:481

    Google Scholar 

  91. Ting RY (1983) Ferroelectrics 49: 251

    Article  CAS  Google Scholar 

  92. Ting RY (1986) Ferroelectrics 67: 143

    Article  CAS  Google Scholar 

  93. Ting RY (1990) Ferroelectrics 102: 215

    Article  CAS  Google Scholar 

  94. Ting RY, Shaulov AA, Smith WA (1992) Ferroelectrics 132: 69

    Article  CAS  Google Scholar 

  95. Newnham RE, Fernandez JF, Markowski KA, Fielding JT, Dogan A, Wallis J (1995) Mater Res Soc Symp Proc 360: 33

    Article  CAS  Google Scholar 

  96. Gururaj TR, Schulze WA, Shrout TR, Safari A, Webster L, Cross LE (1981) Ferrolelectrics 39: 1245

    Article  Google Scholar 

  97. Newnham RE, Skinner DP, Cross LE Mater Res Bull 13: 525

    Google Scholar 

  98. Klicker KA, Biggers JV, Newnham RE J Amer Ceram Soc 64: 5

    Google Scholar 

  99. Newnham RE, Skinner DP, Cross LE Mater Res Bull 13: 599

    Google Scholar 

  100. Rittenmeyer K, Shrout TR, Schulze WA, Newnham RE (1982) Ferroelectrics 41: 189

    Article  Google Scholar 

  101. Klicker KA, Schulze WA, Biggers JV (1982) J Amer Ceram Soc 6: C208

    Google Scholar 

  102. Smith WA (1991) Proc IEEE Ultrason Symp, p 661

    Google Scholar 

  103. Hossak JA, Auld BA (1992) Proc IEEE Ultrason Symp:Tucson, AZ, p 523

    Google Scholar 

  104. Hossak JA, Bedi RL Design of composite piezoelectric transducers. In: Das- Gupta DK (ed) Key engineering materials 92–93

    Google Scholar 

  105. Kino GS (1987) Acoustic waves: imaging and analog signal processing. Prentice Hall, NJ

    Google Scholar 

  106. Pauer LA (1973) IEEE Intern Conf Rec, p 1

    Google Scholar 

  107. Pardo L, Mendiola J, Alemany C (1988) J Appl Phys 64: 5092

    Article  CAS  Google Scholar 

  108. Furakawa T, Fujino K, Fudada E (1976) Jap J App! Phys 15: 2119

    Google Scholar 

  109. Yamada T, Ueda T, Kitayama T (1982) J Appl Phys 53: 4328

    Article  CAS  Google Scholar 

  110. Espinosa FRM, Pavia V, Gallego-Juarez JA, Pappalardo M (1986) Proc IEEE Ultrasonics Symp, p 691

    Google Scholar 

  111. Banno H, Ogurak Sobue H, Ohya K (1987) lap J Appl Phys 26(suppl 1 ): 153

    Google Scholar 

  112. Han K, Safari A, Riman RE (1991) J Amer Ceram Soc 74: 1699

    Article  CAS  Google Scholar 

  113. Garner GM, Shorrocks NM, Whatmor RW, Goosey PS, Ainger FW (1989) Ferroelectrics 93: 169

    Article  CAS  Google Scholar 

  114. Pardo L, Mendiola J, Alemany C (1989) Ferroelectrics 93: 183

    Article  CAS  Google Scholar 

  115. Ngoma JB, Cavaille JY, Paletto J, Perez J (1990) Ferroelectrics 109: 205

    Article  CAS  Google Scholar 

  116. Dias CJ, Das-Gupta DK (1992) Mater Res Soc Symp Proc 276: 25

    Article  CAS  Google Scholar 

  117. Ohigashi H (1968) Ultrasonic transducers in the MHz range. In: Wang TT (ed) The applications of ferroelectric polymers. Blackie, Glasgow, p 237

    Google Scholar 

  118. Wang Y, Zhong W, Zhang P (1993) J Appl Phys 74: 512

    Google Scholar 

  119. Bhalla AS, Newnham RE, Cross LE, Schulze WA (1982) Ferroelectrics 33: 139

    Article  Google Scholar 

  120. Amin M, Balloomal LS, Darwish KA, Osman H, Kamal B (1988) Ferroelectrics 81: 381

    Article  Google Scholar 

  121. Amin M, Osman H, Balloomal L, Darwish KA, Kamal B (1988) Ferroelectrics 81: 387

    Article  Google Scholar 

  122. Tripathi AK, Goel TC, Pillai PKC (1991) Proc IEEE-DEIS ISE7 Berlin, p 415

    Google Scholar 

  123. Fang C, Wang M, Zhou H (1991) Proc. IEEE-DEIS ISE7 Berlin, p 507

    Google Scholar 

  124. Abdullah MJ (1989) A study of electro-active properties of polymer/ceramic composites. PhD Thesis, University of Wales

    Google Scholar 

  125. Abdullah MJ, Das-Gupta DK (1990) IEEE Trans Electr I ns 25: 605

    Article  Google Scholar 

  126. Das-Gupta DK, Abdullah MJ (1988) Ferroelectrics 87: 213

    Article  CAS  Google Scholar 

  127. Dias CJ, Das-Gupta DK (1992) Proc 6th Int Conf on Dielectric Materials Measurements & Applications DMMA6 Manchester, p 393

    Google Scholar 

  128. Dias CJ, Simon M, Quad R, Das-Gupta DK (1993) J. Phys D: Appl Phys 26: 106

    Google Scholar 

  129. Zewdie H, Brouers F (1990) J Appl Phys 68: 713

    Article  CAS  Google Scholar 

  130. Smith WA (1991) IEEE Ultrason Ferroelect Freq Contr 38: 40

    Article  CAS  Google Scholar 

  131. Takeuchi M, Miyamoto Y, Nagasaka H (1985) Jap J Appl Phys 24 (suppl 2): 451

    Article  CAS  Google Scholar 

  132. Chan HLW, Guy L (1994) Polymer composites for high frequency applications. In: Das-Gupta DK (ed) Key engineering materials. Trans Tech, Switzerland, chap 10

    Google Scholar 

  133. Li L, Sotos NR (1995) J Appl Phys 77: 4595

    Article  CAS  Google Scholar 

  134. Shin BC (1994) Sensors Actuators 40: 191

    Article  CAS  Google Scholar 

  135. Beneviste Y (1994) Trans ASME 116: 260

    Google Scholar 

  136. Hossack J (1990) Modelling techniques for 1–3 composite transducers. PhD Thesis, University of Strathclyde

    Google Scholar 

  137. Banno H, Saito S (1983) Jap J Appl Phys 22 (suppl 2): 67

    Article  CAS  Google Scholar 

  138. Banno H (1985) Jap J Appl Phys 24 (suppl 2): 445

    Article  CAS  Google Scholar 

  139. Lee HG, Kim HG (1990) J Appl Phys 67: 2024

    Article  CAS  Google Scholar 

  140. Kino GS (1987) Acoustic waves: devices imaging and analog signal processing. Prentice Hall, NJ

    Google Scholar 

  141. Smith WA, Shaulov AA, Auld BA (1985) Proc IEEE Ultrason Symp, p 642

    Google Scholar 

  142. Chan HLW (1987) Piezoelectric ceramic/polymer 1–3 composites for ultrasonic transducer applications. PhD thesis, Macquarie Univ, Australia

    Google Scholar 

  143. Chan HLW, Unsworth J (1989) IEEE Trans on Ultrasonic Ferroelectrics and Frequency Control 36: 434

    Article  CAS  Google Scholar 

  144. Shaulov AA, Smith WA, Ting RY (1989) Ferroelectrics 93: 177

    Article  CAS  Google Scholar 

  145. Tandon RP, Chaubey DR, Singh R, Soni NC (1993) J Mater Sci Lett 12: 1182

    CAS  Google Scholar 

  146. Ohara Y, Miyayama M, Kuomoto K, Yanagida H (1993) Sensors and Actuators A36: 121

    Article  CAS  Google Scholar 

  147. Salloway AJ, Twiney RC, Whatmore RW, Lane R (1992) Ferroelectrics 134: 89

    Article  Google Scholar 

  148. Egusa S, Iwasawa N (1993) J Mater Sci 28: 1667

    Article  CAS  Google Scholar 

  149. Klein KA, Safari A, Newnham RE, Runt J (1986) Proc IEEE 6th Int Symp on Appl Ferroelectrics: (ISAF6) Penn USA, p 285

    Google Scholar 

  150. Wenger MP, Blanas, P, Shuford RJ, Das-Gupta DK (1996) Polym Eng & Sci 36: 2945

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das-Gupta, D.K. (2000). Smart Ferroelectric Ceramic/Polymer Composite Sensors. In: Osada, Y., De Rossi, D.E. (eds) Polymer Sensors and Actuators. Macromolecular Systems — Materials Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04068-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04068-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08482-9

  • Online ISBN: 978-3-662-04068-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics