Skip to main content

Interactions Between Carbon and Nitrogen Metabolism

  • Chapter
Book cover Plant Nitrogen

Abstract

Over the past two decades, many studies have revealed the interdependence of carbon and nitrogen assimilation. Primary carbon metabolism is dependent on nitrogen assimilation, most obviously because much of the nitrogen budget of the plant is invested in the proteins and chlorophyll of the photosynthetic apparatus. Conversely, nitrogen assimilation requires a continuous supply of energy and carbon skeletons. This means that photosynthetic products must be partitioned between carbohydrate synthesis and the synthesis of amino acids. Controls over this partitioning must be flexible, since both external nitrogen availability and internal nitrogen demand may be variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aslam M, Huffaker RC, Rains DW, Rao KP (1979) Influence of light and ambient carbon dioxide concentration on nitrate assimilation by intact barley seedlings. Plant Physiol 63: 1205–1209

    Article  PubMed  CAS  Google Scholar 

  • Bachmann M, Huber J, Liao P–C, Gage DA, Huber SC (1996) The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14–3–3 protein. FEBS Lett 387: 127 – 131

    Article  PubMed  CAS  Google Scholar 

  • Banks FM, Driscoll SP, Parry MAJ, Lawlor DW, Knight JS, Gray JC, Paul MJ (1999) Decrease in phosphoribulokinase activity by antisense RNA in transgenic tobacco: relationship between photosynthesis, growth, and allocation at contrasting nitrogen supplies. Plant Physiol 119: 1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Blackwell RD, Murray AJS, Lea PJ (1987) Inhibition of photosynthesis in barley with decreased levels of chloroplastic glutamine synthetase activity. J Exp Bot 38: 1799–1809

    Article  CAS  Google Scholar 

  • Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 91: 352–356

    Article  PubMed  CAS  Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99: 1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Bowsher CG, Hucklesby DP, Emes MJ (1989) Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta 177: 359–366

    Article  CAS  Google Scholar 

  • Champigny ML, Foyer CH (1992) Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Basis for a new concept. Plant Physiol 100: 7–12

    Google Scholar 

  • Chen R-D, Gadal P (1990) Do the mitochondria provide 2-oxoglutarate needed for glutamate synthesis in higher plant chloroplast? Plant Physiol Biochem 28: 141–145

    CAS  Google Scholar 

  • Coschigano KT, Melo-Olivieira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinct ferredoxin-GOGAT genes: implications for photorespiration and primary nitrogen assimilation. Plant Cell 10: 741–752

    PubMed  CAS  Google Scholar 

  • De la Torre A, Delgado B, Lara C (1991) Nitrate-dependent 02 evolution in intact leaves. Plant Physiol 96: 898–901

    Article  PubMed  Google Scholar 

  • Dzuibany C., Haupt S., Fock H., Biehler K., Migge A, Becker T (1998) Regulation of nitrate reductase transcript level by glutamine accumulating in the leaves of a ferredoxin-dependent glutamate synthase-deficient gluS mutant of Arabidopsis thaliana, and by glutamine provided via the roots. Planta 206: 515–522

    Article  PubMed  CAS  Google Scholar 

  • Elias BA, Givan CV (1977) Alpha-ketoglutarate supply for amino acid synthesis in higher plant chloroplaste. Intrachloroplastic localization of NADP-specific isocitrate dehydrogenase. Plant Physiol 59: 738–740

    Google Scholar 

  • Elrifi IR, Turpin DH (1986) Nitrate and ammonium induced photosynthetic suppression in N-limited Selenastrum minutum. Plant Physiol 81: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Emes MJ, Neuhaus HE (1997) Metabolism and transport in non-photosynthetic plastids. J Exp Bot 48: 1995–2005

    CAS  Google Scholar 

  • Ferrario S, Valadier MH, Morot-Gaudry JF, Foyer CH (1995) Effects of constitutive expression of nitrate reductase in transgenic Nicotiana plumbaginofolia L. in response to varying nitrogen supply. Planta 196: 288–294

    Article  CAS  Google Scholar 

  • Ferrario S, Valadier MH, Foyer CH (1996) Short-term modulation of nitrate reductase activity by exogenous nitrate in Nicotiana plumbaginofolia and Zea mays leaves. Planta 199: 366–371

    Article  CAS  Google Scholar 

  • Ferrario-Méry S, Suzuki A, Kunz C, Valadier MH, Roux Y, Hirel B, Foyer CH (2000a) Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant and Soil 221: 67–79

    Article  Google Scholar 

  • Ferrario-Méry S, Masclaux C, Suzuki A, Valadier MH, Hirel B, Foyer CH (2000b) a-Ketoglutarate and glutamine are metabolic signals involved in NR gene transcription in untransformed tobacco plants deficient in Fd-GOGAT. Planta (submitted)

    Google Scholar 

  • Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP, Horton P (1994a) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192: 211–220

    Article  CAS  Google Scholar 

  • Foyer CH, Lescure JC, Lefebvre C, Morot-Gaudry JF, Vincentz M, Vaucheret H (1994b) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginofolia plants to changes in nitrate reductase activity. Plant Physiol 104: 171–178

    PubMed  CAS  Google Scholar 

  • Foyer CH, Ferrario-Méry S, Huber SC (1999) Regulation of carbon fluxes in the cytosol. Co-ordination of sucrose synthesis, nitrate reduction and organic and amino acid biosynthesis. In: Leegood RC, Sharkey TD, Von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, The Netherlands pp. 177–203

    Google Scholar 

  • Gastal F, Saugier B (1989) Relationships between nitrogen uptake and carbon assimilation in whole plants of tall fescue. Plant Cell Environ 12: 407–418

    Article  Google Scholar 

  • Gray VM, Cresswell CF (1984) The effect of inhibitors of photosynthetic and respiratory electron transport on nitrate reduction and nitrite accumulation in excised Z. mays L. leaves. J Exp Bot 35: 1166–1176

    Article  CAS  Google Scholar 

  • Hanning I, Heldt HW (1993) On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves. Plant Physiol 103: 1147–1154

    PubMed  CAS  Google Scholar 

  • Häusler RE, Blackwell RD, Lea PI, Leegood RC (1994a) Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. I. Plant characteristics and changes in nitrate, ammonium and amino acids. Planta 194: 406–417

    Google Scholar 

  • Häusler RE, Lea PJ, Leegood RC (1994b) Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. II control of electron transport and CO2 assimilation. Planta 194: 418–435

    Article  Google Scholar 

  • Hoff T, Truong H-N, Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ 17: 489–506

    Article  CAS  Google Scholar 

  • Huppe HC, Farr TJ, Turpin DH (1994) Coordination of chloroplastic metabolism in N-limited Chlamydomonas reinhardtii by redox modulation. 2. Redox modulation activates the oxidative pentose phosphate pathway during photosynthetic nitrate assimilation. Plant Physiol 105: 1043–1048

    Google Scholar 

  • Ireland RJ, Lea PI (1999) The enzymes of glutamine, glutamate, asparagine and aspartate metabolism. In: Singh BJ (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  • Jiang P, Peliska JA, Ninfa JA (1998) Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of the Ntr gene transcription in Escherichia coli. Biochemistry 37: 12795–12801

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Förster 1 (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91: 970–974

    CAS  Google Scholar 

  • Kaiser WM, Huber SC (1994) Post-translational regulation of nitrate reductase in higher plants. Plant Physiol 106: 817–821

    PubMed  CAS  Google Scholar 

  • Kendall AC, Wallsgrove RM, Hall NP, Turner JC, Lea PI (1986) Carbon and nitrogen metabolism in barley (Hordeum vulgare L.) mutants lacking ferredoxindependent glutamate synthase. Planta 168: 316–323

    Article  CAS  Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Miflin BJ, Wallsgrove RM (1978) Photorespiratory nitrogen cycle. Nature 275: 741–743

    Article  Google Scholar 

  • Krömer S, Stitt M, Heldt HW (1988) Mitochondrial oxidative phosphorylation participating in photosynthetic metabolism of a leaf cell. FEBS Lett 226: 352–356

    Article  Google Scholar 

  • Krämer S, Gardeström P, Samuelsson G (1996) Regulation of the supply of cytosolic oxaloacetate for mitochondrial metabolism via phosphenolpyruvate carboxylase in barley leaf protoplasts. I. The effect of covalent modification on PEPc activity, pH response, and kinetic properties. Biochim Biophys Acta 1289: 343–350

    Google Scholar 

  • Kruse A, Fieuw S, Heineke D, Müller-Röber B (1998) Antisense inhibition of cytosolic NADP-dependent isocitrate dehydrogenase in transgenic potato plants. Planta 205: 82–91

    Article  CAS  Google Scholar 

  • Lancien M, Ferrario-Méry S, Roux Y, Bismuth E, Masclaux C, Hirel B, Gadal P, Hodges M (1999) Simultaneous expression of NAD-dependent isocitrate dehydrogenase and other Krebs cycle genes after nitrate resupply to short-term nitrogen starved Nicotiana tabacum. Plant Physiol 120: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Larsen PO, Cornwell KL, Gee SL, Bassham JA (1981) Amino acid synthesis in photosynthesizing spinach cells. Effects of ammonia on pool sizes and rates of labeling from 14CO2. Plant Physiol 68: 292–299

    Article  PubMed  CAS  Google Scholar 

  • Miflin BJ, Lea P (1982) Ammonia assimilation. In: Miflin BJ (ed) The Biochemistry of plants, vol 5. Academic Press, New York, pp 169–202

    Google Scholar 

  • Morcuende R, Krapp A, Hurry V, Stitt M (1998) Sucrose feeding leads to increased rates of nitrate assimilation, increased rates of a-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206: 394–409

    Article  CAS  Google Scholar 

  • Morris PF, Layzell DB, Canvin DT (1989) Photorespiratory ammonia does not inhibit photosynthesis in glutamate mutants of Arabidopsis. Plant Physiol 89: 498–500

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49: 1895–1908

    CAS  Google Scholar 

  • Noctor G, Foyer CH (2000) Homeostasis of adenylate status during photosynthesis in a fluctuating environment. J Exp Bot 51: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Pace GH, Volk RJ, Jackson WA (1990) Nitrate reduction in response to CO2-limited photosynthesis. Relationship to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92: 286–292

    Google Scholar 

  • Palomo J, Gallardo F, Suarez MF, Canovas FM (1998) Purification and characterization of NADP+-linked isocitrate dehydrogenase from Scots pine — evidence for different physiological roles of the enzyme in primary development. Plant Physiol 118: 617–626

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson AG, Moller IM (1990) NADP-utilizing enzymes in the matrix of plant mitochondria. Plant Physiol 94: 1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76: 415–431

    Article  CAS  Google Scholar 

  • Reed AJ, Canvin DT, Sherrard JH, Hageman RH (1983) Assimilation of [15N] nitrate and of [15N] nitrite in leaves of five plant species under light and dark conditions. Plant Physiol 71: 291–294

    Article  PubMed  CAS  Google Scholar 

  • Robinson JM (1988) Spinach leaf chloroplast CO2 and NO2- photoassimilations do not compete for photogenerated reductant: manipulation of reductant levels by quantum flux density titrations. Plant Physiol 88: 1373–1380

    Article  PubMed  CAS  Google Scholar 

  • Rufty TW, Huber SC, Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88: 725–730

    Article  PubMed  CAS  Google Scholar 

  • Rufty TW, MacKown CT, Volk RJ (1989) Effects of altered carbohydrate availability on whole plant assimilation of 15NO3-. Plant Physiol 89: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Scheible W-R, Gonzales-Fontes A, Lauerer M, Rober BM, Caboche M, Stitt M (1997a) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9: 783–798

    PubMed  CAS  Google Scholar 

  • Scheible W-R, Gonzales-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze E-D, Caboche M, Stitt M (1997b) Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203: 304–319

    Article  PubMed  CAS  Google Scholar 

  • Schuller JA, Turpin DH, Plaxton WC (1990) Metabolite regulation of partially purified soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol 94: 1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR, Ogren WL (1980) Inhibition of photosynthesis in Arabidopsis mutans lacking leaf glutamate synthase activity. Nature 286: 257–259

    Article  CAS  Google Scholar 

  • Suzuki I, Crétin C, Omata T, Sugiyama T (1994) Transcriptional and posttranscriptional regulation of nitrogen-responding expression of phosphoenolpyruvate carboxylase gene in maize. Plant Physiol 105: 1223–1229

    PubMed  CAS  Google Scholar 

  • Temple SJ, Knight TJ, Unkefer PJ, Sengupta-Gopalan C (1993) Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: molecular and biochemical analysis. Mol Gen Genet 236: 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Turpin DH, Bruce D (1990) Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett 263: 99–103

    Article  CAS  Google Scholar 

  • Van Quy L, Lamaze T, Champigny ML (1991a) Short-term effects of nitrate on sucrose synthesis in wheat leaves. Planta 185: 53–57

    Article  Google Scholar 

  • Van Quy L, Foyer CH, Champigny ML (1991b) Effect of light and nitrate on wheat leaf phosphoenolpyruvate carboxylase activity. Plant Physiol 97: 1476–1482

    Article  Google Scholar 

  • Vincentz M, Caboche M (1991) Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginofolia plants. EMBO J 10: 1027–1035

    PubMed  CAS  Google Scholar 

  • Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SWJ (1987) Barley mutants lacking chloroplast glutamine synthetase — biochemical and genetic analysis. Plant Physiol 83: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Weger HG, Turpin DH (1989) Mitochondrial respiration can support NO3- and NO2- reduction during photosynthesis. Plant Physiol 89: 409–415

    Article  PubMed  CAS  Google Scholar 

  • Weger HG, Birch DG, Elrifi IR, Turpin DH (1988) Ammonium assimilation requires mitochondrial respiration in the light. A study with the green alga Selenastrum minutum. Plant Physiol 86: 688–692

    Article  PubMed  CAS  Google Scholar 

  • Weger HG, Chadderton AR, Lin M, Guy RD, Turpin DH (1990) Cytochrome and alternative pathway respiration during transient ammonium assimilation by N-limited Chlamydomonas reinhardtii. Plant Physiol 94: 1131–1136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foyer, C.H., Ferrario-Méry, S., Noctor, G. (2001). Interactions Between Carbon and Nitrogen Metabolism. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics