Skip to main content

Amino Acid Transport

  • Chapter

Abstract

Depending on the species, nitrogen may be reduced either by symbiosis with bacteria (legumes, see Chap. 3.1), directly after root uptake from the soil (see Chap. 2), or after xylem transport of the root nitrate to the leaf (most herbaceous species, e.g. Gossypium, Xanthium). Some plants also reduce nitrate partly in the roots and partly in the leaves (Picea, barley, maize). Although the different patterns of reduction result in different patterns of nitrogen transport, one feature common to all plants is that the two main conducting systems (xylem and phloem) are involved, and that xylem/phloem exchanges may occur along the path (Pate 1980). This ensures a constant and efficient recycling of nitrogen among the different organs. As will be detailed below, amino acids play a major role in nitrogen transport. In some cases, especially in the remobilisation of nitrogen from the endosperm to the growing embryo, the transport of small peptides (up to four to five amino acids) also has physiological significance. Although the spectra of amino acids found in the xylem and in the phloem are similar, the xylem usually contains low amino acid concentrations (3–20 mM in Urtica,Rosnick-Shimmel 1985), whereas much higher concentrations are found in the phloem, e.g. 100 mM in rice (Hayashi and Chino 1990) and 60 to 140 mM in different sugar beet varieties (Lohaus et al. 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert G, Carrasco A, Boudet AM (1982) Changes in biochemical composition of vacuoles isolated from Acer pseudoplatanus L. cell culture. Biochim Biophys Acta 721: 22–29

    Article  CAS  Google Scholar 

  • Bennett AB, Spanswick RM (1983) Derepression of amino acid H+ cotransport in developing soybean embryos. Plant Physiol 72: 781–786

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUXI gene: a permease-like regulator of root gravitropism. Science 273: 948–950

    Google Scholar 

  • Berger S, Bell E, Sadka A, Mullet JE (1995) Arabidopsis thaliana AtVsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyljasmonate, wounding, sugars, light and phosphate. Plant Mol Biol 27: 933–942

    Google Scholar 

  • Bick JA, Neelam A, Hall JL, Williams LE (1998) Amino acid carriers of Ricinus communis expressed during seedling development: molecular cloning and expression analysis of two putative amino acid transporters, RcAAP1 and RcAAP2. Plant Mol Biol 36: 377–385

    Article  PubMed  CAS  Google Scholar 

  • Boorer KJ, Fischer WN (1997) Specificity and stoichiometry of the Arabidopsis H+/ amino acid transporter AAP5. J Biol Chem 272: 13040–13046

    Article  PubMed  CAS  Google Scholar 

  • Boorer KJ, Frommer WB, Bush DR, Kreman M, Loo DDF, Wright EM (1996) Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana. J Biol Chem 271: 2213–2220

    Article  PubMed  CAS  Google Scholar 

  • Buckhout TJ (1989) Sucrose transport in plasmalemma vesicles isolated from sugar beet. Planta 178: 393–399

    Article  CAS  Google Scholar 

  • Bush DR (1989) Proton-coupled sucrose transport in plasmalemma vesicles isolated from sugar beet (Beta vulgaris L. cv. Great Western) leaves. Plant Physiol 89: 1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Bush DR (1993) Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 513–542

    Article  CAS  Google Scholar 

  • Bush DR (1999) Amino acid transport. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 305–318

    Google Scholar 

  • Bush DR, Langston-Unkefer PJ (1988) Amino acid transport into membrane vesicles isolated from zucchini: evidence of a proton-amino acid symport in the plasmalemma. Plant Physiol 88: 487–490

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Bush DR (1997) Topology of NAT2, a prototypical example of a new family of amino acid transporters. J Biol Chem 272: 30552–30557

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Bush DR (1997) LHT1, a lysine and histidine-specific amino acid transporter in Arabidopsis. Plant Physiol 115: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Chollet JF, Delétage C, Faucher M, Miginiac L, Bonnemain JL (1997) Synthesis and structure-activity relationships of some pesticides with an a-amino acid function. Biochim Biophys Acta 1336: 341–351

    Article  Google Scholar 

  • Coleman GD, Englert JM, Chen THH, Fuchigami LH (1993) Physiological and environmental requirements for poplar (Populus deltoïdes) bark storage protein degradation. Plant Physiol 102: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Cooper HD, Clarkson DT (1989) Cycling of amino nitrogen and other nutrients between shoots and roots in cereals — a possible mechanism integrating shoot and root in the regulation of the nutrient uptake. J Exp Bot 40: 753–762

    Article  CAS  Google Scholar 

  • Corre N, Ourry A, Boucaud J (1996) Mobilization of nitrogen reserves during regrowth of defoliated Trifolium repens L. and identification of vegetative storage proteins. J Exp Bot 47: 1111–1118

    Article  CAS  Google Scholar 

  • Cyr DR, Bewley JD (1989) Carbon and nitrogen reserves of leafy spurge (Euphorbia esula) roots as related to overwintering strategy. Physiol Plant 77: 67–72

    Article  CAS  Google Scholar 

  • De Jong A, Wolswinkel P (1995) Differences in release of endogenous sugars and amino acids from attached and detached seed coats of developing pea seeds. Physiol Plant 94: 78–86

    Article  Google Scholar 

  • De Jong A, Koerselman-Kooij JW, Schuurmans AMJ, Borstlap AC (1997) The mechanism of amino acid efflux from seed coats of developing pea seeds as revealed by uptake experiments. Plant Physiol 114: 731–736

    PubMed  Google Scholar 

  • Despeghel JP, Delrot S (1983) Energetics of amino acid uptake by Vicia faba leaf tissue. Plant Physiol 71: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Jager R, Kaiser G, Martinoia E (1990) Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts. Plant Physiol 92: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1965) Anatomy of seed plants, 2nd ed. John Wiley, New York Eschrich W (1963) Der Phloemsaft von Cucurbita ficifolia. Planta 60: 216–224

    Google Scholar 

  • Etherton B, Rubinstein B (1978) Evidence for amino acid-H+ co-transport in oat coleoptiles. Plant Physiol 61: 933–937

    Article  PubMed  CAS  Google Scholar 

  • Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13: 241–273

    CAS  Google Scholar 

  • Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270: 16315–16320

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K, From- mer WB (1998) Amino acid transport in plants. Trends Plant Sci 3: 188–195

    Article  Google Scholar 

  • Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA 90: 5944–5948

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Rentsch D (1994) Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett 347: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann 0 (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci USA 92: 12036–12040

    CAS  Google Scholar 

  • Gaillard C, Lemoine R, Delrot S (1990) Absorption de la L-valine par des vésicules de plasmalemme purifiées de feuilles de Betterave (Beta vulgaris L.). CR Acad Sci Serie D, Paris, Life sciences or sciences de la Vie, 311: 51–56

    Google Scholar 

  • Girousse C, Bournoville R, Bonnemain JL (1996) Water-deficit-induced changes in concentrations in proline and some othe amino acids in the phloem sap of alfalfa. Plant Physiol 111: 109–113

    PubMed  CAS  Google Scholar 

  • Goerlach J, Willms-Hoff I (1992) Glycine uptake into barley mesophyll vacuoles is regulated but not energized by ATP. Plant Physiol 99: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Tully RE (1979) Amino acids translocated from turgid and water- stressed barley leaves. II. Studies with 13N and 14C. Plant Physiol 64: 467–471

    Article  PubMed  CAS  Google Scholar 

  • Harrington GN, Franceschi VR, Offler CE, Patrick JW, Tegeder M, Frommer WB, Harper JF, Hitz WD (1997) Cell specific expression of three genes involved in plasma membrane sucrose transport in developing Vicia faba seed. Protoplasma 197: 160–173

    Article  CAS  Google Scholar 

  • Hayashi H, Chino M (1990) Chemical composition of phloem sap form the uppermost internode of the rice plant. Plant Cell Physiol 31: 247–251

    CAS  Google Scholar 

  • Heilmeier H, Freund M, Steinlein T, Schulze ED, Monson RK (1994) The influence of nitrogen availability on carbon and nitrogen storage in the biennial Cirsium

    Google Scholar 

  • vulgare (Savi) Ten. I. Storage capacity in relation to resource acquisition, allocation and recycling. Plant Cell Environ 17: 1125–1131

    Google Scholar 

  • Hendershot KL, Volonec JJ (1993) Nitrogen pools in taproots of Medicago sativa L. after defoliation. J Plant Physiol 141: 129–135

    Article  CAS  Google Scholar 

  • Higgins CF, Payne JW (1977) Characterization of active dipeptide transport by germinating barley embryos: effects of pH and metabolic inhibitors. Planta 136: 71–76

    Article  CAS  Google Scholar 

  • Higgins CF, Payne JW (1978) Peptide transport by germinating barley embryos: uptake of physiological di-and oligopeptides. Planta 138: 211–215

    Article  CAS  Google Scholar 

  • Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of Hi-/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14: 535–544

    Article  PubMed  CAS  Google Scholar 

  • Hocking PJ (1980) The composition of the phloem exudate and xylem sap from tree tobacco (Nicotiana glauca). Ann Bot 45: 633–640

    CAS  Google Scholar 

  • Homeyer U, Litek K, Huchzermeyer B, Schultz G (1989) Uptake of phenylalanine into isolated barley vacuoles is driven by both adenosine triphosphatase and pyrophosphatase: evidence for a hydrophobic L-amino acid carrier system. Plant Physiol 89: 1388–1393

    Article  PubMed  CAS  Google Scholar 

  • Housley TL, Schrader LE, Mill RM, Setter TL (1979) Partitioning of 14C photosynthate and long distance translocation of amino acids in preflowering and flowering nodulated and nonnodulated soybeans. Plant Physiol 64: 94–98

    Article  PubMed  CAS  Google Scholar 

  • Hsu LC, Chiou TJ, Chen L, Bush DR (1993) Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA 90: 7441–7445

    Article  PubMed  CAS  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105: 3–7

    CAS  Google Scholar 

  • Jamai A, Chollet JF, Delrot S (1994) Proton-peptide co-transport in broad bean leaf tissues. Plant Physiol 106: 1023–1031

    PubMed  CAS  Google Scholar 

  • Kang SM, Titus JS (1980) Qualitative and quantitative changes in nitrogenous compounds in senescing leaf and bark tissues of the apple. Physiol Plant 50: 285–290

    Article  CAS  Google Scholar 

  • Kinraide TB (1981) Electrical evidence for different mechanisms of uptake for basic, neutral and acidic amino acids in oat coleoptiles. Plant Physiol 65: 10851089

    Google Scholar 

  • Kinraide TB, Etherton B (1980) Interamino acid inhibition of transport in higher plants. Plant Physiol 68: 1327–1333

    Article  Google Scholar 

  • Kipps A, Boulter D (1974) Origin of the amino acids in pods and seeds of Vicia faba L. New Phytol 73: 675–684

    Article  CAS  Google Scholar 

  • Kwart M, Hirner B, Hummel S, Frommer WB (1993) Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J 4: 993–1002

    Article  PubMed  CAS  Google Scholar 

  • Lalanne E, Mathieu C, Roche O, Vedel F, De Pape R (1997) Structure and specific expression of a Nicotiana sylvestris putative amino-acid transporter gene in mature and in vitro germinating pollen. Plant Mol Biol 35: 855–864

    Article  PubMed  CAS  Google Scholar 

  • Lanfermeyer FC, Koerselmankooij J, Borstlap AC (1990) Changing kinetics of L-valine uptake by immature pea cotyledons during development. Planta 181: 576–582

    Google Scholar 

  • Larsson C, Widell S, Kjellbohm P (1987) Preparation of high purity plasma membranes. Methods Enzymol 148: 558–568

    Article  CAS  Google Scholar 

  • Layzell DB, LaRue TA (1982) Modeling C and N transport to developing soybean fruits. Plant Physiol 70: 1290–1298

    CAS  Google Scholar 

  • Lemoine R, Delrot S (1989) Proton motive force driven sucrose uptake in sugar beet plasma membrane vesicles. FEBS Lett 249: 129–133

    Article  CAS  Google Scholar 

  • Lemoine R, Bourquin S, Delrot S (1991) Active uptake of sucrose by plant plasma membrane vesicles: determination of some important physical and energetical parameters. Physiol Plant 82: 377–384

    Article  CAS  Google Scholar 

  • Lemoine R, Gallet O, Gaillard C, Frommer WB, Delrot S (1992) Plasma membrane vesicles from source and sink leaves. Changes in solute transport and polypeptide composition. Plant Physiol 100: 1150–1156

    Google Scholar 

  • Lemoine R, Kühn C, Thiele N, Delrot S, Frommer WB (1996) Antisense inhibition of the sucrose transporter in potato: effects on amount and activity. Plant Cell Environ 19: 1124–1131

    Article  CAS  Google Scholar 

  • Li ZC, Bush DR (1990) ApH-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet leaves: I. Evidence for carrier-mediated, electrogenic flux through multiple transport systems. Plant Physiol 94: 268–277

    Google Scholar 

  • Li ZC, Bush DR (1991) 4H-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet (Beta vulgaris L.) leaves. II. Evidence for multiple aliphatic, neutral amino acid symports. Plant Physiol 96: 1338–1344

    Google Scholar 

  • Limami A, Dufossé C, Richard-Molard C, Fouldrin K, Roux L, Morot-Gaudry JF (1996) Effect of exogenous nitrogen (15NO3) on utilization of vegetative storage proteins (VSP) during regrowth in chicory (Cichorium intybus L.). J Plant Physiol 149: 564–572

    Article  CAS  Google Scholar 

  • Lohaus G, Burba M, Heldt HW (1994) Comparison of the contents of sucrose and amino acids in the leaves, phloem sap and taproots of high and low sugar-producing hybrids of sugar beet (Beta vulgaris L.). J Exp Bot 45: 1097–1101

    Article  CAS  Google Scholar 

  • Mae T, Makino A, Ohira K (1983) Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa). Plant Cell Physiol 21: 1079–1081

    Google Scholar 

  • Martinoia E, Ratajczak R (1998) Transport of organic molecules across the tonoplast. Adv Bot Res 25: 366–400

    Google Scholar 

  • Martinoia E, Keck U, Wiemcken A (1981) Vacuoles as storage compartments for nitrate in barley leaves. Nature 289: 292–294

    Article  CAS  Google Scholar 

  • Martinoia E, Thume M, Vogt E, Rentsch D, Dietz KJ (1991) Transport of arginine and aspartic acid into isolated barley mesophyll vacuoles. Plant Physiol 97: 64450

    Article  Google Scholar 

  • Marvier AC, Neelam A, Bick JA, Hall JL, Williams LE (1998) Cloning of a cDNA coding for an amino acid carrier from Ricinus communis (RcAAPI) by functional complementation in yeast: kinetic analysis, inhibitor sensitivity and substrate specificity. Biochim Biophys Acta 1373: 321–331

    Article  PubMed  CAS  Google Scholar 

  • Millard P (1988) The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ 11: 1–8

    Article  CAS  Google Scholar 

  • Montamat F, Maurousset L, Tegeder M, Frommer W, Delrot S (1999) Cloning and expression of amino acid transporters from broad bean. Plant Mol Biol 41: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Mounoury G, Delrot S, Bonnemain JL (1984) Energetics of threonine uptake by pod wall tissues of Vicia faba L. Planta 161: 178–185

    Article  CAS  Google Scholar 

  • Muller B, Touraine B (1992) Inhibition of NO3- uptake by various phloem-translocated amino acids in soybean seedlings. J Exp Bot 43: 617–623

    Article  CAS  Google Scholar 

  • Paiva E, Lister RM, Park WD (1983) Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol 71: 161–168

    Article  PubMed  CAS  Google Scholar 

  • Pate JS (1973) Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol Biochem 5: 109–119

    Article  CAS  Google Scholar 

  • Pate JS (1976) Nutrients and metabolites of fluids recovered from xylem and phloem: significance in relation to long distance transport in plants. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. CSIRO, Canberra, pp 253–345

    Chapter  Google Scholar 

  • Pate JS (1980) Transport and partitioning of nitrogenous solutes. Annu Rev Plant Physiol 31: 313–340

    Article  CAS  Google Scholar 

  • Pate JS (1989) Origin, destination and fate of phloem solutes in relation to organ and whole plant functioning. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman Scientific, Harlow, pp 138–166

    Google Scholar 

  • Pate JS, Sharkey PJ, Lewis OAM (1974) Phloem bleeding from legume fruits: a technique for study of fruit nutrition. Planta 120: 229–243

    Article  CAS  Google Scholar 

  • Parsons R, Baker A (1996) Cycling of amino compounds in symbiotic lupin. J Exp Bot 47: 421–429

    Article  CAS  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol 48: 191–222

    Article  PubMed  CAS  Google Scholar 

  • Peoples MB, Beilharz VC, Waters SP, Simpson RJ, Dalling MJ (1980) Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). II. Chloroplast senescence and the degradation of ribulose-1,5-bisphosphate carboxylase. Planta 81: 494–500.

    Google Scholar 

  • Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370: 264–268

    Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8: 1437–1446

    PubMed  CAS  Google Scholar 

  • Riens B, Lohaus G, Heineke D, Heldt HW (1991) Amino acid and sucrose content determined in the cytosolic, chloroplastic and vacuolar compartment and in the phloem sap of spinach leaves. Plant Physiol 97: 227–233

    Article  PubMed  CAS  Google Scholar 

  • Rochat C, Boutin JP (1991) Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants (Pisum sativum L.). J Exp Bot 42: 207–214

    Article  CAS  Google Scholar 

  • Rochat C, Boutin JP (1992) Temporary storage compounds and sucrose-starch metabolism in seed coats during pea seed development (Pisum sativum). Physiol Plant 85: 567–572

    Article  CAS  Google Scholar 

  • Rosnick-Shimmel I (1985) The influence of nitrogen nutrition on the accumulation of free amino acids in root tissue of Urtica dioica and their apical transport in xylem sap. Plant Cell Physiol 26: 215–219

    Google Scholar 

  • Sagisaka S (1987) Amino acid pools in herbaceous plants at the wintering stage and at the beginning of growth. Plant Cell Physiol 28: 171–178

    CAS  Google Scholar 

  • Sauter JJ, Van Cleve B (1992) Seasonal variation of amino acids in the xylem sap of “Populus x canadensis” and its relation to protein body mobilization. Trees 7: 26–32

    Article  Google Scholar 

  • Schobert C, Komor E (1989) The differential transport of amino acid into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve tube sap. Planta 177: 342–349

    Article  CAS  Google Scholar 

  • Schobert C, Komor E (1990) Transfer of amino acids and nitrate from the roots into the xylem of Ricinus communis seedlings. Planta181: 85–90

    Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and yaminobutyric acid in tomato pollen. Plant Cell 11: 377–391

    PubMed  CAS  Google Scholar 

  • Servaites JC, Schrader LE, Jung DM (1979) Energy-dependent loading of amino

    Google Scholar 

  • acids and sucrose in the phloem of soybean. Plant Physiol 64: 546–550

    Google Scholar 

  • Sharkey PJ, Pate JS (1975) Selectivity in xylem to phloem transfer of amino acids in

    Google Scholar 

  • fruiting shoots of white lupin (Lupinus albus L.). Planta 127: 251–252

    Google Scholar 

  • Simpson RJ, Dalling MJ (1981) Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). III. Enzymology and transport of amino acids from senescing flag leaves. Planta 151: 447–456

    Google Scholar 

  • Staswick PE (1990) Novel regulation of vegetative storage protein genes. Plant Cell 2: 1–6

    PubMed  CAS  Google Scholar 

  • Steiner HY, Song W, Zhang L, Naider F, Becker JM, Stacey G (1994) An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6: 1289–1299

    PubMed  CAS  Google Scholar 

  • Tammes PML, Van Die J (1964) Studies on phloem exudation from Yucca flaccida. I. Some observations on the phenomenon of bleeding and the composition of the exudate. Acta Bot Neerl 13: 76–83

    Google Scholar 

  • Thomas H (1978) Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta 151: 447–456

    Google Scholar 

  • Thorne JH (1985) Phloem unloading of C and N assimilates in developing seeds. Annu Rev Plant Physiol 36: 317–343

    CAS  Google Scholar 

  • Thume M, Dietz KJ (1991) Reconstitution of the tonoplast amino acid carrier into liposomes: evidence for an ATP-regulated carrier in different species. Planta 185: 569–575

    Article  CAS  Google Scholar 

  • Tromp J (1983) Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant Soil 71: 401–413

    Article  CAS  Google Scholar 

  • Van Bel AJE (1984) Quantification of the xylem-to-phloem transfer of amino acids by use of inulin (14C) carboxylic acid as xylem transport marker. Plant Sci Lett 35: 81–85

    Article  Google Scholar 

  • Van Bel AJE (1990) Xylem-phloem exchange via the rays: the under valued route of transport. J Exp Bot 41: 631–644

    Article  Google Scholar 

  • Van Bel AJE, Koops AJ, Dueck T (1986) Does light-promoted export from Commelina benghalensis leaves result from differential light-sensitivity of the cells in the mesophyll-to-sieve tube path? Physiol Plant 67: 227–234

    Article  Google Scholar 

  • Van Cleve B, Apel K (1993) Induction by nitrogen and low temperature of storage protein synthesis in poplar trees exposed to long days. Planta 189: 157–160

    Google Scholar 

  • Weiner H, Blechschmidt-Schneider S, Mohme H, Eschrich W, Heldt HW (1991) Phloem transport of amino acids. Comparison of amino acid contents of maize leaves and of the sieve tube exudate. Plant Physiol Biochem 29: 19–23

    Google Scholar 

  • Weston K, Hall JL, Williams LE (1994) Characterization of a glutamine/proton cotransporter from Ricinus communis roots using isolated plasma membrane vesicles. Physiol Plant 91: 623–630

    Article  CAS  Google Scholar 

  • Weston K, Hall JL, Williams LE (1995) Characterization of amino-acid transport in Ricinus communis roots using isolated membrane vesicles. Planta 196: 166–173

    Article  CAS  Google Scholar 

  • Wetzel S, Demmers C, Greenwood JS (1989) seasonally fluctuating bark proteins are a potential form of nitrogen storage in three temperate hardwoods. Planta 178: 275–281

    Google Scholar 

  • Williams LE, Nelson SJ, Hall JL (1992) Characterisation of solute proton cotransport in plasma membrane vesicles from Ricinus cotyledons, and a comparison with other tissues. Planta 186: 541–550

    Article  CAS  Google Scholar 

  • Winter H, Lohaus G, Heldt HW (1992) Phloem transport of amino acids and sucrose in correlation to the corresponding metabolite levels in barley leaves. Plant Physiol 99: 996–1004

    Article  PubMed  CAS  Google Scholar 

  • Wittenbach VA (1983) Purification and characterization of a soybean leaf storage glycoprotein. Plant Physiol 73: 125–129

    Article  PubMed  CAS  Google Scholar 

  • Wolswinkel P (1992) Transport of nutrients into developing seeds: a review of physiological mechanisms. Seed Sci Res 2: 59–73

    Article  CAS  Google Scholar 

  • Wyse RE, Komor E (1984) Mechanism of amino acid uptake by sugarcane suspension cells. Plant Physiol 76: 865–870

    Article  PubMed  CAS  Google Scholar 

  • Zhou JJ, Theodoulou F, Muldin I, Ingemarsson B, Miller Al (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273: 12017–12023

    Article  PubMed  CAS  Google Scholar 

  • Ziegler H (1975) Nature of transported substances. In: Zimmerman MN, Milburn JA (eds) Encyclopedia of plant physiology, new series, vol 1. Transport in plants. Springerg, Berlin Heidelberg New York, pp 59–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delrot, S., Rochat, C., Tegeder, M., Frommer, W. (2001). Amino Acid Transport. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics