Skip to main content

Nodule Formation and Function

  • Chapter
Plant Nitrogen

Abstract

Nitrogen (N2) is a very unreactive molecule. The reason for its chemical stability lies in the electronic structure of the molecule, but nitrogen is not totally inert. The industrial reduction of nitrogen to ammonia (principally by the Haber-Bosch process) is very important commercially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht C, Geurts R, Lapeyrie F, Bisseling T (1998) Endomycorrhizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A. Plant J 15: 605–614

    Article  CAS  Google Scholar 

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Ardourel M, Demont N, Debellé F, Maillet F, De Billy F, Promé JC, Dénarié J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374

    Google Scholar 

  • Arredondo-Peter R, Hargrove MS, Moran JF, Sarath G, Klucas RV (1998) Plant hemoglobins. Plant Physiol 18: 1121–1125

    Article  Google Scholar 

  • Atkins CA, Smith PMC, Storer PJ (1997) Re-examination of the intracellular localization of de novo purine synthesis in cowpea nodules. Plant Physiol 113: 127–135

    PubMed  CAS  Google Scholar 

  • Awonaike KO, Lea PJ, Miflin BJ (1981) The localisation of the enzymes of ammonia assimilation in root nodules of Phaseolus vulgaris. Plant Sci Lett 23: 189–195

    Article  CAS  Google Scholar 

  • Bakkers J, Semino CE, Stroband H, Kijne JW, Robbins PW, Spaink HP (1997) An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proc Natl Acad Sci USA 94: 7982–7986

    Article  PubMed  CAS  Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium-legume symbiosis. Plant Mol Biol Rep 8: 40–49

    Google Scholar 

  • Batut J, Boistard P (1994) Oxygen control of rhizobium. Antonie van Leeuwenhoek Journal: Antonie varr Leeuwenhoek 66: 129

    Google Scholar 

  • Bauer P, Ratet P, Crespi MD, Schultze M, Kondorosi A (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnodl2A expression patterns in alfalfa roots. Plant J 10: 91–105

    Article  CAS  Google Scholar 

  • Bergersen FJ, Turner GL (1975a) Leghaemoglobin and the supply of O2 to nitrogen fixing root nodule bacteroids: studies of an experimental system with no gas phase. J Gen Microbiol 89: 31–47

    Article  Google Scholar 

  • Bergersen FJ, Turner GL (1975b) Leghaemoglobin and the supply of O2 to nitrogen fixing root nodule bacteroids: presence of two oxidase systems and ATP production at low free O2 concentration. J Gen Microbiol 91: 345–354

    Article  PubMed  CAS  Google Scholar 

  • Bergersen FJ, Turner GL (1980) Properties of terminal oxidase systems of bacteroids from root nodules of soybean and cowpea and of N2-fixing bacteria grown in continuous culture. J Gen Microbiol 118: 235–252

    CAS  Google Scholar 

  • Bohme H (1998) Regulation of nitrogen fixation in heterocyst-forming bacteria. Trends Plant Sci 3: 346–351

    Article  Google Scholar 

  • Bono J-J, Riond J, Nicolaou KC, Bockovich NJ, Estevez VA, Cullimore JV, Ranjeva R (1995) Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J 7: 253–260

    Article  PubMed  CAS  Google Scholar 

  • Brears T, Walker EL, Coruzzi GM (1991) A promoter sequence involved in cell-specific expression of the pea glutamine synthetase GS3A gene in organs of transgenic tobacco and alfalfa. Plant J 1: 235–244

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7: 191–226

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, O’Parka KJ, Sprent JI, Walsh KB (1995) Symplastic transport in soybean nodules. Soil Biol Biochem 27: 387–399

    Article  CAS  Google Scholar 

  • Bryce JH, Day DA (1990) Tricarboxylic acid cycle activity in mitochondria from soybean nodules and cotyledons. J Exp Bot 41: 961–967

    Article  CAS  Google Scholar 

  • Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96: 2983–3011

    Article  PubMed  CAS  Google Scholar 

  • Capone DG, Zehr JP. Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276: 1221–1229

    Google Scholar 

  • Carlson RW, Price NPJ, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant-Microbe Interact 7: 684–695

    Article  PubMed  CAS  Google Scholar 

  • Charon C, Johansson C, Kondorosi E, Kondorosi A, Crespi M (1997) ENOD40 induces dedifferentiation and division of root cortical cells in legumes. Proc Natl Acad Sci USA 94: 8901–8906

    Google Scholar 

  • Chen R, Siver DL, de Bruijn FJ (1998) Nodule parenchyma-specific expression of the Sesbania rostrata early nodulin gene SrEnod2 is mediated by its 3 untranslated region. Plant Cell 10: 1585–1602

    PubMed  CAS  Google Scholar 

  • Cohn J, Day RB, Stacey G (1998) Legume nodule organogenesis. Trends Plant Sci 3: 105–110

    Article  Google Scholar 

  • Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6: 215–225

    PubMed  CAS  Google Scholar 

  • Craig J, Barratt P, Tatge H, Dejardin A, Handley L, Gardner CD, Barber L, Wang T, Hedley C, Martin C, Smith AM (1999) Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase. Plant J 17: 353–362

    Article  CAS  Google Scholar 

  • Csanadi G, Szecsi J, Kalo P, Kiss P, Endre G, Kondorosi A, Kondorosi E, Kiss GB (1994) ENOD 12, an early nodulin gene, is not required for nodule formation and efficient nitrogen fixation in alfalfa. Plant Cell 6: 201–213

    Google Scholar 

  • Cullimore JV, Cock JM, Daniell TJ, Swarup R, Bennett MJ (1992) Inducibility of the glutamine synthetase gene family of Phaseolus vulgaris L. Inducible plant proteins. J.L. Wray Cambridge University Press, pp 79–95

    Google Scholar 

  • Day DA, Copeland L (1991) Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol Biochem 29: 185–201

    CAS  Google Scholar 

  • Day DA, Mannix M (1988) Malate oxidation by soybean nodule mitochondria and the possible consequences for nitrogen fixation. Plant Physiol Biochem 26: 567–273

    CAS  Google Scholar 

  • Dean RM, Rivers, RL, Zeidel, ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38: 347–353

    Google Scholar 

  • deBilly F, Barker G, Gallusci P, Truchet G (1991) Leghaemoglobion gene transcrtiption is triggered in a single layer in the indeterminate nitrogen-fixing root nodule of alfalfa. Plant J 1: 27–35

    Article  CAS  Google Scholar 

  • de Carvalho-Niebel F, Lescure N, Cullimore JV, Gamas P (1998) The Medicago truncatula MtAnnl gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. Mol Plant-Microbe Interact 11: 504–513

    Article  Google Scholar 

  • de Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Schiavo FL, Terzi M, Bisseling T, Van Kammen A, de Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5: 615–620

    Google Scholar 

  • Dénarié J, Debellé F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46: 497–531

    Article  PubMed  Google Scholar 

  • Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65: 503–535

    Article  PubMed  Google Scholar 

  • Dixon R, Cheng Q, Shen G-F, Day A, Dowson-Day M (1997) Nif gene transfer and expression in chloroplasts: prospects and problems. Plant Soil 194: 193–203

    Google Scholar 

  • Downie JA (1994) Signalling strategies for nodulation of legumes by rhizobia. Trends Microbiol 2: 318–324

    Article  PubMed  CAS  Google Scholar 

  • Downie JA (1998) Functions of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae, Molecular biology of model Plant-associated bacteria. Kluwer, Dordrecht, pp 387–402

    Google Scholar 

  • Driscoll BT, Finan TM (1996) NADP-dependent malic enzyme of Rhizobium meliloti. J Bacteriol 178: 2224–2231

    PubMed  CAS  Google Scholar 

  • Driscoll BT, Finan TM (1997) Properties of NAD- and NADP-dependent malic enzymes of Rhizobium (Sinorhizobium meliloti) and differential expression of their genes in nitrogen-fixing bacteroids. Microbiology 143: 489–498

    Article  PubMed  Google Scholar 

  • Dubrovo PN, Krylova W, Livanova GI, Zhiznevskaya GY, Izmailov SF (1992) Properties of ATPases of the peribacteroid membrane in root nodules of yellow lupine. Sov Plant Physiol 39: 318–324

    Google Scholar 

  • Duc G, Messager A (1989) Mutagenesis of Pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci 60: 207–213

    Article  Google Scholar 

  • Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96: 3013–3030

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–1000

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673–681

    Article  PubMed  CAS  Google Scholar 

  • Elmerich C, Kondorosi A, Newton WE (eds) (1998) Biological nitrogen fixation for the 21st century. 11th Int Congr on Nitrogen Fixation. Kluwer, Dordrecht

    Google Scholar 

  • Etzler ME, Kalsi G, Ewing NN, Roberts NJ, Day RB, Murphy JB (1999) A Nod factor binding lectin with apyrase activity from legume roots. Proc Natl Acad Sci USA 96: 5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Fang YW, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116: 53–68

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1995) Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharide. Plant J 7: 939–947

    Article  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1998) The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J 13: 455–463

    Article  CAS  Google Scholar 

  • Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an Oacetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10: 351–360

    Article  PubMed  CAS  Google Scholar 

  • Fischer H-M (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58: 352–386

    PubMed  CAS  Google Scholar 

  • Fischer H-M (1996) Environmental regulation of rhizobial symbiotic nitrogen fixing genes.Trends Microbiol 4: 317–319

    CAS  Google Scholar 

  • Fischer H-M, Schneider K, Babst M, Hennecke H (1999) GRoE1 chaperon are required for the formation of functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171: 279–289

    Article  CAS  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357: 655–660

    Google Scholar 

  • Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2: 282–293

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Day HM, Turton JF, Shen W-J, Cullimore JV, Oliver JE (1989) Two glutamine synthetase genes from Phaseolus vulgaris display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1: 391–401

    PubMed  CAS  Google Scholar 

  • Fuller F, Minster PW, Nguyen T, Verma DPS (1983) Soybean nodule genes: analysis of cDNA clones reveals several major tissue specific sequences nitrogen-fixing root nodules. Proc Natl Acad Sci USA 80: 2594–2598

    Article  PubMed  CAS  Google Scholar 

  • Gallon JR, Chaplin AE (1987) An introduction to nitrogen fixation. Cassell, London

    Google Scholar 

  • Gamas P, Niebel FDC, Lescure N, Cullimore JV (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant-Microbe Interact 9: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Gantt JS, Larson RJ, Farnham MW, Parthirana SM, Miller S, Vance C (1992) Aspartate aminotransferase in effective and ineffective root nodules. Plant Physiol 98: 868–878

    Article  PubMed  CAS  Google Scholar 

  • Gogorcena Y, Gordon AJ, Escuredo PR, Minchin FR, Witty JF, Moran JF, Becana M (1998) N2 fixation, carbon metabolism and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol 113: 1193–1201

    Google Scholar 

  • Gonzalez EM, Gordon AJ, James CL, Arrese-Igor C (1995) The role of sucrose syn- thase in the response of soybean nodules to drought. J Exp Bot 46: 1515–1523

    Article  CAS  Google Scholar 

  • Gonzalez JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179: 141–146

    Google Scholar 

  • Gordon AJ (1992) Carbon metabolism in the legume nodule. In: Pollock CJ, Farrar JF, Gordon AJ (eds) Carbon partitioning within and between organisms. Bios, Oxford, pp 33–162

    Google Scholar 

  • Gordon AJ, James CL (1997) Enzymes of carbohydrate and amino acid metabolism in developing and mature nodules of white clover. J Exp Bot 48: 895–903

    Article  CAS  Google Scholar 

  • Gordon AJ, Ryle GJA, Mitchell DF, Powell CE (1985) The flux of 14C-labelled photosynthate through soyabean root nodules during N2 fixation. J Exp Bot 36: 756–769

    Article  CAS  Google Scholar 

  • Gordon AJ, Ryle GJA, Mitchell DF, Lowry KH, Powell CE (1986) The effect of defoliation on carbohydrate, protein and leghaemoglobin content of white clover nodules. Ann Bot 58: 141–154

    CAS  Google Scholar 

  • Gordon AJ, Mitchell DF, Ryle, GJA, Powell CE (1987) Diurnal production and utilization of photosynthate in nodulated white clover. J Exp Bot 38: 84–98

    Article  CAS  Google Scholar 

  • Gordon AJ, Thomas BJ, Reynolds PHS(1992) Localisation of sucrose synthase in soybean root nodules. New Phytol 122: 35–44

    Google Scholar 

  • Gordon AJ, Minchin FR, Skot L, James CL (1997) Stress induced declines in soybean nitrogen fixation are related to nodule sucrose synthase activity. Plant Physiol 114: 937–946

    PubMed  CAS  Google Scholar 

  • Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120: 867–877

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES, Pate JS, Minchin FR, Marks I (1974) Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. In: Transport at the cellular level. SEB Symposium, vol 28. Cambridge University Press, Cambridge, pp 87–126

    Google Scholar 

  • Hadri AE, Bisseling T (1998) Responses of the plant to Nod factors. In:Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae, molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 403–416

    Google Scholar 

  • Hanning I, Baumgarten K, Schott K, Heldt HW (1999) Oxaloacetate transport into plant mitochondria. Plant Physiol 119: 1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85: 6602–6606

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1996) Lipid composition of symbiosomes from pea root nodules. Phytochemistry 42: 341–346

    Article  CAS  Google Scholar 

  • Herrada G, Puppo A, Rigaud J (1989) Uptake of metabolites by bacteroid-containing vesicles and by free bacteroids from french bean nodules. J Gen Microbiol 135: 3165–3171

    CAS  Google Scholar 

  • Hirsch AM, Fang YW (1994) Plant hormones and nodulation: what’s the connection? Plant Mol Biol 26: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the rhizobium legume symbiosis. Fungal Genet Biol 23: 205–212

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86: 1244–1248

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Becker JD, Puhler A, Perlick AM, Kuster H (1999) Genomic organisation and expression of the MtSucS1 gene, which encodes a nodule-enhanced sucrose synthase in the model legume Medicago truncatula. Mol Gen Genet 261: 524–522

    Article  Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96: 2965–2982

    Article  PubMed  CAS  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44: 483–511

    Article  CAS  Google Scholar 

  • Huss-Danell K (1997) Tansley review no 93: actinorhizal symbioses and their N2 fixation. New Phytol 136: 375–405

    Article  CAS  Google Scholar 

  • Jiang QY, Gresshoff PM (1997) Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant-Microbe Interact 10: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Journet EP, Pichon M, Dedieu A, deBilly F, Truchet G, Barker DG (1994) Rhizobium meliloti Nod factors elicit cell specific transcription of the ENOD12 gene in transgenic alfalfa. Plant J 6: 241–249

    Google Scholar 

  • Kamst E, Bakkers J, Quaedvlieg NE, Pilling J, Kijne JW, Lugtenberg BJ, Spaink HP (1999) Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to 04 of the reducing-terminal residue. Biochemistry 38: 4045–4052

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg EL, Brewin NJ (1994) Host-plant invasion by Rhizobium: the role of cell-surface components. Trends Microbiol 2: 277–283

    Article  PubMed  CAS  Google Scholar 

  • Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388: 533–538

    Article  CAS  Google Scholar 

  • Kondorosi A (1992) Regulation of nodulation genes in rhizobia. In: Verma DPS (ed), Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 325–340

    Google Scholar 

  • Kozik A, Heidstra R, Horvath B, Kulikova O, Tikhonovich I, Ellis THN, Vankammen A, Lie TA, Bisseling T (1995) Pea lines carrying syml or sym2 can be modulated by Rhizobium strains containing nodX; syml and sym2 are allelic. Plant Sci 108: 41–49

    Article  CAS  Google Scholar 

  • Kurkdjian AC (1995) Role of the differentiation of root epidermal cells in Nod factor (from Rhizobium meliloti)-induced root hair depolarization of Medicago sativa. Plant Physiol 107: 783–790

    PubMed  CAS  Google Scholar 

  • Kuzma MM, Winter H, Storer P, Oresnik I, Atkins CA, Layzell DB (1999) The site of oxygen limitation in soybean nodules. Plant Physiol 119: 399–407

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA, Walker GC (1994) Exopolysaccharides of Rhizobium — synthesis, regulation and symbiotic function. Trends Genet 10: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784

    Article  PubMed  CAS  Google Scholar 

  • Le Vier K, Day DA, Guerinot ML (1996) Iron uptake by symbiosomes from soybean root nodules. Plant Physiol 111: 613–618

    Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8: 1885–1898

    Google Scholar 

  • Lorquin J, Lortet G, Ferro M, Mear N, Dreyfus B, Prome JC, Boivin C (1997) Nod factors from Sinorhizobium saheli and S teranga by. sesbaniae are both arabinosylated and fucosylated, a structural feature specific to Sesbania rostrata symbionts. Mol Plant-Microbe Interact 10: 879–890

    Article  CAS  Google Scholar 

  • Madsen O, Sandal L, Sandal N, Marcker KA (1993) A soybean copropopyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Marcker K, Lund M, Jensen EO, Marcker KA (1984) Transcription of soybean leghemoglobin gene during nodule development. EMBO J 3: 1691–1695

    PubMed  CAS  Google Scholar 

  • Mellor RB, Werner D (1986) The fractionation of Glycine max root nodule cells — a methodological overview. Endocytobios Cell Res 3: 317–336

    Google Scholar 

  • Mellor RB, Christensen TMIE, Bassarab S, Werner D (1985) Phospholipid transfer from ER to the peribacteroid membrane in soybean nodules. Z Naturforsch 40c: 73–79

    Google Scholar 

  • Mergaert P, Ferro M, D’Haeze W, van Montagu M, Holsters M, Promé JC (1997) Nod factors of Azorhizobium caulinodans strain ORS571 can be glycosylated with an arabinosyl group, a fucosyl group, or both. Mol Plant-Microbe Interact 10: 683–687

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Day DA, Bergersen FJ (1995) Microaerobic respiration and oxidative phosphorylation by soybean mitochondria: implications for nitrogen fixation. Plant Cell Environ 18: 715–726

    Article  CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T, Emons AM (I 999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin-perturbing drug. Plant J 17: 141–154

    Google Scholar 

  • Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP (1998) Alfalfa malate dehydrogenase (MDH): molecular cloning and characterisation of five different forms reveals a unique nodule-enhanced MDH. Plant J 15: 173–184

    Article  PubMed  CAS  Google Scholar 

  • Minami E, Kouchi H, Carlson RW, Cohn JR, Kolli VK, Day RB, Ogawa T, Stacey G (1996) Cooperative action of lipo-chitin nodulation signals on the induction of the early nodulin, ENOD2, in soybean roots. Mol Plant-Microbe Interact 7: 574–583

    Article  Google Scholar 

  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29: 881–888

    Article  CAS  Google Scholar 

  • Moreau S, Meyer JM, Puppo A (1995) Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Lett 361: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Morrell M, Copeland L (1984) Enzymes of sucrose breakdown in soybean nodules. Plant Physiol 74: 1030–1034

    Article  Google Scholar 

  • Morrell M, Copeland L (1985) Sucrose synthase of soybean nodules. Plant Physiol 78: 149–154

    Article  Google Scholar 

  • Mouritzen P, Rosendahl L (1997) Identification of a transport mechanism for NH4+ in the symbiosome membrane of pea root nodules. Plant Physiol 115: 519–526

    PubMed  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7: 869–885

    PubMed  CAS  Google Scholar 

  • Nap JP, Bisseling T (1990) Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science 250: 948–954

    Article  PubMed  CAS  Google Scholar 

  • Nicolaou KC, Bockovich NJ, Carcanague DR, Hummel CW, Even LF (1992) Total synthesis of the NodRm-IV factors, the Rhizobium nodulation signals. J Am Chem Soc 114: 8701–8702

    Article  CAS  Google Scholar 

  • Niebel A, Bono JJ, Ranjeva R, Cullimore JV (1997) Identification of a high-affinity binding site for lipo-oligosaccharidic NodRm factors in the microsomal fraction of Medicago cell suspension cultures. Mol Plant-Microbe Interact 10: 132–134

    Article  CAS  Google Scholar 

  • O’Brian MR (1996) Herne synthesis in the Rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments. J Bacteriol 178; 2471–2478

    PubMed  Google Scholar 

  • Ou Yang L-J, Day DA (1992) Transport properties of sybiosomes isolated from sir-atro nodules. Plant Physiol Biochem 30: 613–623

    Google Scholar 

  • Palacios R, Mora J, Newton WE (1993) (eds) New horizons in nitrogen fixation. 9th International Congress on Nitrogen Fixation. Kluwer, Dordrecht

    Google Scholar 

  • Pate JS, Gunning BES, Briarty LG (1969) Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta 85: 11–34

    Article  Google Scholar 

  • Pathirana MS, Samac DA, Roeven R, Yoshioka H, Vance CP (1997) Analysis phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules. Plant J 12: 293–304

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K (1997) Nodule-specific gene expression. Physiol Plant 99: 617–631

    Article  CAS  Google Scholar 

  • Pedersen AL, Feldner HC, Rosendahl L (1996) Effect of proline on nitrogenase activity in symbiosomes from root nodules of soybean (Glycine max L.) subjected to drought stress. J Exp Bot 303: 1533–1539

    Article  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530

    Article  PubMed  CAS  Google Scholar 

  • Perotto S, Vandenbosch KA, Butcher GW, Brewin NJ (1991) Molecular composition and development of the plant glycocalyx associated with the peribacteroid membrane of pea nodules. Development 112: 763–773

    CAS  Google Scholar 

  • Peters NK (1997) Nodulation: finding the lost common denominator. Curr Biol 7: R223 - R226

    Article  PubMed  CAS  Google Scholar 

  • Pingret JL, Journet EP, Barker DG (1998) Rhizobium Nod factor signaling. Evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659672

    Google Scholar 

  • Postgate J (1987) Nitrogen fixation, 2nd edn. Arnold, London

    Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90: 3309–3313

    Article  PubMed  CAS  Google Scholar 

  • Preisig O, Zufferey R, Hennecke H (1996) The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high affinity cbb 3 type cytochrome oxidase. Arch Microbiol 165: 297–305

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Day DA, Gresshoff PM (1987) Rapid isolation of intact peribacteroid envelopes from soybean nodules and demonstration of selective permeability to metabolites. J Plant Physiol 130: 157–164

    Article  CAS  Google Scholar 

  • Price NPJ, Relic B, Talmont E, Lewin A, Prome D, Pueppke SG, Maillet F, Dénarié J, Promé JC, Broughton WJ (1992) Broad host range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are 0-acetylated or sulphated. Mol Microbiol 6: 3575–3584

    Article  PubMed  CAS  Google Scholar 

  • Radyukina NL, Bruskova RK, Izmailov SF (1992) Transport of 14C substrate through peribacteroidal membrane of yellow-lupin nodules. Dokl Bot Sci 323: 603–606

    CAS  Google Scholar 

  • Rai AN (ed) (1990) A handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Rawsthorne S, La Rue TA (1986) Metabolism under microaerobic conditions of mitochondria from cowpea nodules. Plant Physiol 81: 1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Steptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-Co dehydrogenase. J Biol Chem 272: 26627–26633

    Article  PubMed  CAS  Google Scholar 

  • Robertson JG, Taylor MP (1973) Acid and alkaline invertases in roots and nodules of Lupinus augustifolius infected with Rhizobium lupini. Planta 112: 1–6

    Article  CAS  Google Scholar 

  • Robertson JG, Lyttleton P (1984) Division of peribacteroid membranes in root nodules of white clover. J Cell Sci 69: 147–157

    PubMed  CAS  Google Scholar 

  • Robertson JG, Warburton MP, Lyttleton P, Fordyce AM, Bullivan S (1978) Membranes in lupin root nodules. II. Preparation and properties of peribacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules. J Cell Sci 30: 151–174

    Google Scholar 

  • Robinson DL, Pathirana SM, Gantt JS, Vance CP (1996) Immunogold localisation of nodule-enhanced phosphoenolpyruvate carboxylase in alfalfa. Plant Cell Environ 19: 602–608

    Article  CAS  Google Scholar 

  • Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulphation of lipo-oligosaccharide signals. Cell 67: 1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debellé F, Ferro M, Truchet G, Promé JC, Dénarié J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA 93: 15305–15310

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl L, Dilworth MJ, Glenn AR (1992) Exchange of metabolites across the peribacteroid membrane in pea root nodules. J Plant Physiol 139: 635–638

    Article  CAS  Google Scholar 

  • Roth EJK, Stacey G (1988) Homology in endosymbiotic systems: the term “symbiosome”. In: Palacios R, Verma DPS (eds) Molecular genetics of plant-microbe interactions. American Phytopathology Society, St Paul, pp 220–225

    Google Scholar 

  • Sadowsky MJ, Graham PH (1998) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae, molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 155–172

    Google Scholar 

  • Sagan M, Morandi D, Tarenghi E, Duc G (1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula ( Gaertn) after gamma-ray mutagenesis. Plant Sci 111: 63–71

    Google Scholar 

  • Santana MA, Pihakaski-Maunsbach K, Sandal N, Marker KA, Smith AG (1998) Evidence that the plant host synthesizes the heme moiety of leghemoglobin in root nodules. Plant Physiol 116: 1259–1269

    Article  PubMed  CAS  Google Scholar 

  • Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259: 414–423

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Van De Wiel C, Zalensky A, Horvath B, Spaink HP, van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kammen A, Bisseling T (1990) The ENOD12 gene product is involved in the infection process during pea-Rhizobium interaction. Cell 60: 281–294

    Article  PubMed  CAS  Google Scholar 

  • Schlaman HRM, Okker RJH, Lugtenberg BJJ (1992) Regulation of nodulation gene expression by nodD in Rhizobia. J Bacteriol 174: 5177–5182

    PubMed  CAS  Google Scholar 

  • Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae, molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 361–386

    Google Scholar 

  • Schmidt J, Rohrig H, John M, Wieneke U, Stacey G, Koncz C, Schell J (1993) Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J 4: 651–658

    Article  CAS  Google Scholar 

  • Schubert KR, Boland MJ (1990) The ureides. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants, vol 16. Academic Press, San Diego, pp 197–282

    Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32: 33–57

    Article  PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi E, Ratet P, Buire M, Kondorosi A (1994) Cell and molecular biology of Rhizobium-plant interactions. Int Rev Cytol 156: 1–75

    Article  CAS  Google Scholar 

  • Selker JML (1988) Three-dimensional organization of uninfected tissue in soybean root nodules and its relation to cell specialization in the central region. Protoplasma 147: 178–190

    Article  Google Scholar 

  • Selker JML, Newcomb EH (1985) Spatial relationships between uninfected and infected cells in root nodules of soybean. Planta 156: 446–454

    Article  Google Scholar 

  • Semino CE, Robbins PW (1995) Synthesis of “Nod”-like chitin oligosaccharides by the Xenopus developmental protein DG42. Proc Natl Acad Sci USA 92: 3498–3501

    Article  PubMed  CAS  Google Scholar 

  • She Q, Lauridsen P, Stougaard J, Marcker KA (1993) Minimal enhancer elements of the leghaemoglobin lba and lbc3 gene promoters from Glycine max have different properties. Plant Mol Biol 22: 945–956

    Article  PubMed  CAS  Google Scholar 

  • Shi LF, Twary SN, Yoshioka H, Gregerson RG, Miller SS, Samac DA, Gantt, Unkefer PJ, Vance CP (1997) Nitrogen assimilation in alfalfa: isolation and characterisation of an asparagine synthetase gene showing enhanced expression in root nodules and dark adapted leaves. Plant Cell 9: 1339–1356

    PubMed  CAS  Google Scholar 

  • Smit G, de Koster CC, Schripsema J, Spaink HP, van Brussel AAN, Kijne JW (1995) Uridine, a cell division factor in pea roots. Plant Mol Biol 29: 869–873

    Article  PubMed  CAS  Google Scholar 

  • Soupene E, Foussard M, Boistard P, Truchet G, Batut J (1995) Oxygen as a key developmental regulator of Rhizobium meliloti N2 fixation gene-expression within the alfalfa root-nodule. Proc Natl Acad Sci USA 92: 3759–3763

    Article  PubMed  CAS  Google Scholar 

  • Spaink H P (1995) The molecular basis of infection and nodulation by rhizobia — the ins and outs of sympathogenesis. Annu Rev Phytopathol 33: 345–368

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit Rev Plant Sci 15: 559–582

    CAS  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen-fixing organisms: pure and applied aspects. Chapman and Hall, London

    Book  Google Scholar 

  • Streeter JG (1991) Transport and metabolism of carbon and nitrogen in legume nodules. Adv Bot Res 18: 129–187

    Article  CAS  Google Scholar 

  • Streeter JG (1992) Analysis of apoplastic solutes in the cortex of soybean nodules. Physiol Plant 84: 584–592

    Article  CAS  Google Scholar 

  • Streeter JG (1995) Recent developments in carbon transport and metabolism in symbiotic systems. Symbiosis 19: 175–196

    CAS  Google Scholar 

  • Sutton JM, Lea EJA, Downie JA (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 91: 9990–9994

    Article  PubMed  CAS  Google Scholar 

  • Szafran MM, Haaker H (1995) Properties of the peribacteroid membrane ATPase of pea root nodules and its effect on the nitrogenase activity. Plant Physiol 108: 1227–1232

    PubMed  CAS  Google Scholar 

  • Szczyglowski K, Hamburger D, Kapranov P, deBruijn FJ (1997) Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule specific genes. Plant Physiol 114: 1335–1346

    Article  PubMed  CAS  Google Scholar 

  • Szczyglowski K, Kapranov P, Hamburger D, deBruijn FJ (1998a) The Lotus japonicus NOD70 nodulin gene encodes a protein with similarities to transporters. Plant Mol Biol 37: 651–661

    Article  PubMed  CAS  Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, De Bruijn FJ (1998b) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant-Microbe Interact 11: 684–697

    Article  CAS  Google Scholar 

  • Takane K, Tajimas, Kouchi H (1997) Two distinct uricase (nodulin 35) genes are differentially expressed in soybean plants. Mol Plant-Microbe Interactions 10: 735–741

    Article  CAS  Google Scholar 

  • Temple SJ, Heard J, Ganter J, Dunn G, Sengupta-Gopalan C (1995) Characterisation of a nodule-enhanced glutamine synthetase from alfalfa. Mol Plant-Microbe Interact 8: 218–227

    Article  PubMed  CAS  Google Scholar 

  • Temple SJ, Kunjibettu S, Roche D, Sengupta-Gopalan S (1996) Total glutamine synthetase activity during soybean nodule development is controlled at the level of transcription and holoprotein turnover. Plant Physiol 112: 1723–1733

    PubMed  CAS  Google Scholar 

  • Temple SJ, Vance CP, Gantt JS (1998) Glutamate synthase and nitrogen assimilation. Trends Plant Sci 3: 51–56

    Article  Google Scholar 

  • Tercé-Laforgue T, Carrayol E, Cren M, Desbrosses G, Hecht V, Hirel B (1999) A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase. Plant Mol Biol 39: 551–564

    Article  PubMed  Google Scholar 

  • Thummler F, Verma DPS (1987) Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availability of free heme in nodules. J Biol Chem 262: 14730–14736

    PubMed  CAS  Google Scholar 

  • Tikonovich IA, Provoro NA, Romanov VI, Newton WE (1995) Nitrogen fixation: fundamentals and applications. 10th International Congress of Nitrogen Fixation. Kluwer, Dordrecht

    Google Scholar 

  • Timmers ACJ, Auriac MC, Debilly F, Truchet G (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development 125: 339–349

    PubMed  CAS  Google Scholar 

  • Trepp GB, van de Mortel M, Yoshioka H, Miller SS, Samac DA, Gantt JS, Vance CP (1999a) NADH-glutamate synthase in alfalfa roots. Genetic regulation and cellular expression. Plant Physiol 119: 817–828

    Google Scholar 

  • Trepp GB, Plank DW, Gantt, Vance CP (1999b) NADH-glutamate synthase in alfalfa root nodules. Immunocytochemical localisation. Plant Physiol 119: 829837

    Google Scholar 

  • Trepp GB, Temple SJ, Bucciarelli B, Shi LF, Vance CP (1999c) Expresssion map for genes involved in nitrogen and carbon metabolism in alfalfa root nodules. Mol Plant-Microbe Interact 12: 526–535

    Article  CAS  Google Scholar 

  • Trinchant J-C, Birot AM, Rigaud J (1981) Oxygen supply and energy-yielding substrates for nitrogen fixation (acetylene reduction) by bacteroid preparations. J Gen Microbiol 125: 159–165

    CAS  Google Scholar 

  • Trinchant J-C, Guérin V, Rigaud J (1994) Acetylene reduction by symbiosomes and free bacteroids from faba-bean (Vicia faba L.) nodules. Plant Physiol 105: 555–561

    PubMed  CAS  Google Scholar 

  • Trinchant J-C, Yang Y.S., Rigaud J (1998) Proline accumulation inside symbiosomes of faba bean nodules under salt stress. Physiol Plant 104: 38–49

    Article  CAS  Google Scholar 

  • Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Promé JC, Dénarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673

    Article  CAS  Google Scholar 

  • Tyerman SD, Whitehead LF, Day DA (1995) A channel-like transporter for NH4+ on the symbiotic surface of N2 fixing plants. Nature 378: 629–632

    Article  CAS  Google Scholar 

  • Udvardi MK, Price GD, Gresshoff PM, Day DA (1988) A dicarboxylate transporter on the peribacteroid membrane of soybean nodules. FEBS Lett 231: 36–40

    Article  CAS  Google Scholar 

  • Udvardi MK, Day DA (1989) Electrogenic ATPase activity on the peribacteroid membrane of soybean (Glycine max L.) root nodules. Plant Physiol 90: 982–987

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Day DA (1990) Ammonia (14C-methylamine) transport across the bacteroid and peribacteroid membranes of soybean (Glycine max L.) root nodules. Plant Physiol 94: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 42: 373–392

    Google Scholar 

  • Udvardi MK, Lister DL, Day DA (1991) ATPase activity and anion transport across the peribacteroid membrane of isolated soybean symbiosomes. Arch Microbiol 156: 362–366

    Article  CAS  Google Scholar 

  • van Brussel AAN, Zaat SAJ, Canter-Cremers HCJ, Wijffelman CA, Pees E, Tak T, Lugtenberg BJJ (1986) Role of plant root exudate and Sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common vetch. J Bacteriol 165: 517–522

    PubMed  Google Scholar 

  • van Brussel AAN, Bakhuizen R, Van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJJ, Kijne JW (1992) Induction of preinfection thread structures in the leguminous host plant by mitogenic lipooligosaccharides of Rhizobium. Science 257: 70–72

    Article  PubMed  Google Scholar 

  • Vanden Bosch KA, Newcomb EH (1988) The occurrence of leghaemoglobin protein in the uninfected instertitial cells of soybean root nodules. Planta 175: 442–451

    Article  Google Scholar 

  • van der Sande K, Pawlowski K, Czaja I, Wieneke U, Schmidt J, Walden R, Matvienko M, Wellink J, van Kammen A, Franssen H, Bisseling T (1996) Modification of phytohormone response by a peptide encoded by ENOD40 of legume and a nonlegume. Science 273: 370–373

    Article  PubMed  Google Scholar 

  • van der Weil C, Scheres B, Franssen H, van Lierop MJ, van Lammeren A, van Kammen A, Bisseling T (1990) The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9: 1–7

    Google Scholar 

  • Vance CP, Gantt JS (1992) Control of nitrogen and carbon metabolism in root nodules. Physiol Plant 85: 266–274

    Article  CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaption. Annu Rev Plant Physiol Plant Mol Biol 42: 373–392

    Article  CAS  Google Scholar 

  • Vance CP, Gregerson RG, Robinson SL, Miller SS, Gantt JS (1994) Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci 101: 51–64

    Article  CAS  Google Scholar 

  • Vance CP, Miller SS, Gregerson RG, Samac DA, Robinson DL, Gantt JS (1995) Alfalfa NADH-dependent glutamate synthase: structure of the gene and importance in symbiotic nitrogen fixation. Plant J 8: 345–358

    Article  PubMed  CAS  Google Scholar 

  • Verma DPS, Hong ZL (1996) Biogenesis of the peribacteroid membrane in root nodules. Trends Microbiol 4: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Walsh (1995) Physiology of the legume nodule and its response to stress. Soil Biol Biochem 27: 637–655

    Google Scholar 

  • Walsh KB, Vessey JK, Layzell DB (1987) Carbohydrate supply and N2 fixation in soybean. The effect of varied daylength and stem girdling. Plant Physiol 85: 137–144

    Google Scholar 

  • Walsh KB, Canny MJ, Layzell DB (1989) Vascular transport and soybean nodule function: II, a role for phloem supply in product export. Plant Cell Environ 12: 713–723

    Google Scholar 

  • Wang TL, Hedley CL (1993) Seed mutants in Pisum. Pisum Genet 25: 64–70

    Google Scholar 

  • Waters JK, Hughes BL, Purcell LC, Gerhardt KO, Mawhinney TP, Emerich DW (1998) Alanine, not ammonia, is excreted from nitrogen-fixing soybean nodule bacteroids. Proc Natl Acad Sci USA 95: 12038–12042

    Article  PubMed  CAS  Google Scholar 

  • Weaver CD, Shomer NH, Louis CF, Roberts DM (1994) Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem 269: 1858–1862

    Google Scholar 

  • Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appelby CA (1996) Siderophore-bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178: 161–169

    Article  CAS  Google Scholar 

  • Wycoff KL, Hunt S, Gonzales MB, VandenBosch KA, Layzell DB, Hirsch AM (1998) Effects of oxygen on nodule physiology and expression of nodulins in alfalfa. Plant Physiol 117: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Yang GP, Debellé F, Savagnac A, Ferro M, Schiltz O, Maillet F, Promé D, Trilhou M, Vialas C, Lindstrom K, Dénarié J, Promé JC (1999) Structure of the Mesorhizobium huakuii and Rhizobium gaelgae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with a,(3-unsaturated N-acyl substitutions. Mol Microbiol 34: 227–237

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Gregerson RG, Samac DA, Hoevens KCM, Trepp G, Gantt JS, Vance CP (1999) Aspartate aminotransferase in alfalfa nodules. Mol Plant-Microbe Interact 12: 263–274

    Article  CAS  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Biological nitrogen fixation. Stacey G, Burris RH, Evans HJ (eds) Chapman and Hall, New York pp. 43–86

    Google Scholar 

  • Zammit A, Copeland L (1993) Immunocytochemical localisation of nodule-specific sucrose synthase in soybean nodules. Aust J Plant Physiol 20: 25–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gordon, A.J., Lea, P.J., Rosenberg, C., Trinchant, JC. (2001). Nodule Formation and Function. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics