Skip to main content

Nitrate Reduction and signalling

  • Chapter

Abstract

The ability to use nitrate as sole nitrogen source to sustain growth is a property shared by some bacteria and fungi and by most algae and plants. The biochemical pathway responsible for nitrate assimilation seems to be the same in both prokaryotes and eukaryotes. Soil nitrate is the preferred inorganic nitrogen source for many wild or cultivated plants. It seems, indeed, that most plants, unlike bacteria or fungi, which preferentially use ammonium as a nitrogen source, show better growth when nitrate is present. The generalisation of the use of chemical fertilizers has allowed a tremendous increase in crop yield during the past 50 years. However, there is now a growing concern about the effect of nitrate, on both the environment and human health (Chap. 8). Indeed, nitrate can accumulate in high concentrations in the leaves of edible plants or in drinking water. Once taken up from the soil by an active process (see Chap. 1.1), nitrate is either stored in the plant root system or translocated to aerial parts via the xylem. High concentrations of nitrate can be found in vacuoles and it seems that nitrate, beside its role as a nutrient, participates in the maintenance of the plant osmoticum. The first committed step of the nitrate assimilation pathway is the reduction of nitrate to nitrite, catalysed by assimilatory nitrate reductase (NR, Fig. 1). In some bacteria, dissimilatory nitrate reduction, in which nitrate replaces oxygen as a terminal electron acceptor for respiration, is also found, but the utilisation of nitrate for respiration in anaerobic plant cells is still debated. The nitrite formed by NR activity is translocated to the chloroplast, where it is further reduced to ammonium by nitrite reductase (NiR). Ammonium is subsequently incorporated into the amino acid pool through the action of glutamine synthetase (GS) and glutamate synthase (GOGAT) (see Chap. 2.2 and Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athwal GS, Huber JL, Huber SC (1998a) Phosphorylated nitrate reductase and 143–3 proteins. Site of interaction, effect of ions, and evidence for an AMP–binding site on 14–3–3 proteins. Plant Physiol 118: 1041 – 1048

    Article  PubMed  CAS  Google Scholar 

  • Athwal GS, Huber JL, Huber SC (1998b) Biological significance of divalent metal ion binding to 14–3–3 proteins in relationship to nitrate reductase inactivation. Plant Cell Physiol 39: 1065 – 1072

    Article  PubMed  CAS  Google Scholar 

  • Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC (1996a) Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8: 505–517

    PubMed  CAS  Google Scholar 

  • Bachmann M, Huber J L, Liao PC, Gage DA, Huber SC (1996b) The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14–3–3 protein. FEBS Lett 387: 127 – 131

    Article  PubMed  CAS  Google Scholar 

  • Bowsher CG, Long DM, Oaks A, Rothstein SJ (1991) Effect of light/dark cycles on expression of nitrate assimilatory genes in maize shoots and roots. Plant Physiol 95: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Callaci JJ, Smarrelli JJ (1991) Regulation of the inducible nitrate reductase isoform from soybeans. Biochim Biophys Acta 1088: 127–130

    Article  PubMed  CAS  Google Scholar 

  • Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M (1987) Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet 209: 552–562

    Article  PubMed  CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50: 277–303

    Article  PubMed  CAS  Google Scholar 

  • Cheng CL, Dewdney J, Nam H-G, den Boer BGW, Goodman HM (1988) A new locus (Niai) in Arabidopsis thaliana encoding nitrate reductase. EMBO J 7: 3309–3314

    PubMed  CAS  Google Scholar 

  • Cheng CL, Acedo GN, Cristinsin M, Conkling MA (1992) Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA 89: 1861–1864

    Article  PubMed  CAS  Google Scholar 

  • Crawford N (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868

    PubMed  CAS  Google Scholar 

  • Crawford N, Arst HN (1993) The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet 27: 115–146

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Smith M, Bellissimo D, Davis RW (1988) Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc of the Nat Acad Sci USA 85: 5006–5010

    Article  CAS  Google Scholar 

  • Crete P, Caboche M, Meyer C (1997) Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J 11: 625–634

    Article  PubMed  CAS  Google Scholar 

  • Dailey FA, Warner RL, Somers DA, Kleinhofs A (1982) Characteristics of a nitrate reductase in a barley mutant deficient in NADH nitrate reductase. Plant Physiol 69: 1200–1204

    Article  PubMed  CAS  Google Scholar 

  • Daniel-Vedele F, Caboche M (1996) Molecular analysis of nitrate assimilation in higher plants. Cr Acad Sci Paris 319: 961–968

    CAS  Google Scholar 

  • Deng M-D, Moureaux T, Leydecker M-T, Caboche M (1990) Nitrate reductase expression is under the control of a circadian rhythm and is light inducible in Nicotiana tabacum leaves. Planta 180: 257–261

    Article  CAS  Google Scholar 

  • Deng XW, Caspar T, Quail PH (1991) copi: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5: 1172–1182

    Google Scholar 

  • Dorbe MF, Truong HN, Crété P, Daniel-Vedele F (1998) Deletion analysis of the tobacco Mil promoter in Arabidopsis thaliana. Plant Sci 139: 71–82

    Article  CAS  Google Scholar 

  • Douglas P, Morrice N, MacKintosh C (1995) Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett 377: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Douglas P, Pigaglio E, Ferrer A, Halford NG, MacKintosh C (1997) Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Cat+ ions. Biochem J 325: 101–109

    PubMed  CAS  Google Scholar 

  • Douglas P, Moorhead G, Hong Y, Morrice N, MacKintosh C (1998) Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulin-domain protein kinase. Planta 206: 435–442

    Article  PubMed  CAS  Google Scholar 

  • Duncanson E, Gilkes AF, Kirk DW, Sherman A, Wray JL (1993) nir1, a conditional-lethal mutation in barley causing a defect in nitrite reduction. Mol Gen Genet 236: 275–28

    Google Scholar 

  • Dzuibany C, Haupt S, Fock H, Biehler K, Migge A, Becker T (1998) Regulation of nitrate reductase transcript levels by glutamine accumulating in the leaves of a ferredoxin-dependent glutamate synthase-deficient gluS mutant of Arabidopsis thaliana and by glutamine provided by the roots. Planta 206: 515–522

    Article  PubMed  CAS  Google Scholar 

  • Evans HJ, Nason A (1953) Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol 28: 233–254

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Cardenas J (1989) Genetics and regulatory aspects of nitrate assimilation in algae. In: ( Wray J L and Kinghorn J R (eds) Molecular and genetic aspects of nitrate assimilation. Oxford Science Publications, Oxford, pp 101–124

    Google Scholar 

  • Fido RJ (1991) Isolation and partial amino acid sequence of domains of nitrate reductase from spinach. Phytochemistry 30: 3519–3523

    Article  PubMed  CAS  Google Scholar 

  • Friemann A, Brinkmann K, Hachtel W (1991) Sequence of a cDNA encoding bi-. specific NAD(P)H-nitrate reductase from the tree Betula pendula and identification of conserved protein regions. Mol Gen Genet 227: 97–105

    Article  PubMed  CAS  Google Scholar 

  • Friemann A, Brinkmann K, Hachtel W (1992) Sequence of a cDNA encoding nitrite reductase from the tree Betula pendula and identification of conserved protein regions. Mol Gen Genet 231: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Gabard J, Marion-Poll A, Chérel I, Meyer C, Müller A, Caboche M (1987) Isolation and characterization of Nicotiana plumbaginifolia nitrate reductase-deficient mutants: genetic and biochemical analysis of the Nia complementation group. Mol Gen Genet 209: 596–606

    Article  PubMed  CAS  Google Scholar 

  • Gabard J, Pelsy F, Marion-Poll A, Caboche M, Sallbach I, Grafe R, Müller AJ (1988) Genetic analysis of nitrate reductase deficient mutants of Nicotiana plumbaginifolia: evidence for six complementation groups among 70 classified molybdenum cofactor deficient mutants. Mol Gen Genet 213: 206–213

    Article  CAS  Google Scholar 

  • Galangau F, Daniel-Vedele F, Moureaux T, Dorbe M-F, Leydecker M-T, Caboche M (1988) Expression of leaf nitrate reductase gene from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol 88: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Geiger M, Walch-Piu L, Harnecker J, Schulze E.-D, Ludewig F, Sonnewald U, Stitt M, (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in higher plants. Plant Cell Environ 21: 253–268

    Article  CAS  Google Scholar 

  • Glaab J, Kaiser WM (1995) Inactivation of nitrate reductase involves NR-protein phosphorylation and subsequent “binding” of an inhibitor protein. Planta 195: 514–518

    Article  CAS  Google Scholar 

  • Godon C, Caboche M, Daniel-Vedele F (1995) Use of biolistic process for the analysis of nitrate-inducible promoters in transient expression assays. Plant Sci 111: 209–218

    Article  CAS  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989) Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380

    Google Scholar 

  • Hoarau J, Nato A, Lavergne D, Flipo V, Hirel B (1991) Nitrate reductase activity changes during a culture cycle of tobacco cells: the participation of a membrane-bound form enzyme. Plant Sci 79: 193–204

    Article  CAS  Google Scholar 

  • Hoff T, Truong HN, Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimation. Plant Cell Environ 17: 489–506

    Article  CAS  Google Scholar 

  • Hoff T, Schnorr KM, Meyer C, Caboche M (1995) Isolation of two Arabidopsis cDNAs involved in early steps of molybdenum cofactor biosynthesis by functional complementation of Escherichia coli. J Biol Chem 270: 6100–6107

    Article  PubMed  CAS  Google Scholar 

  • Huber JL, Huber SC, Campbell WH, Redinbaugh MG (1992) Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys 296: 58–65

    Article  PubMed  CAS  Google Scholar 

  • Huber SC, Kaiser WM (1997) Correlation between apparent activation state of nitrate reductase (NR), NR hysteresis and degradation of NR protein. J Exp Bot 132: 1367–1374

    Google Scholar 

  • Hwang CF, Lin Y, D’Souza T, Cheng CL (1997) Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiol 113: 853–862

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Brendle-Behnisch E (1991) Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis. II In vitro modulation by ATP and AMP. Plant Physiol 96: 368–375

    Google Scholar 

  • Kaiser WM, Förster J (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91: 970–974

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Spill D, Brendle-Behnisch E (1992) Rapid light-dark modulation of assimilatory nitrate reductase in spinach leaves involves adenine nucleotides. Planta 186: 236–240

    Article  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105: 385–390

    Article  CAS  Google Scholar 

  • Kanamura K, Wang R, Su W, Crawford NM (1999) Ser–534 in the hinge 1 region of Arabidopsis nitrate reductase is conditionally required for binding of 14–3–3 proteins and in vitro inhibition. J Biol Chem 274: 4160 – 4165

    Article  Google Scholar 

  • Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91: 973–983

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Warner RL (1990) Advances in nitrate assimilation. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants. Academic Press, San Diego, pp 89–120

    Google Scholar 

  • Kronenberger J, Lepingle A, Caboche M, Vaucheret H (1993) Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet 236: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Kunze M, Riedel J, Lange U, Hurwitz R, Tischner R (1997) Evidence for the presence of GPI-anchored PM-NR in leaves of Beta vulgaris and for PM-NR in barley leaves. Plant Physiol Biochem 35: 507–512

    CAS  Google Scholar 

  • Labrie ST, Crawford NM (1994) A glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. J Biol Chem 269: 14497–14501

    PubMed  CAS  Google Scholar 

  • Lejay L, Quilleré I, Roux Y, Tillard P, Cliquet JB, Meyer C, Morot-Gaudry JF, Gojon A (1997) Abolition of posttranscriptional regulation of nitrate reductase partially prevents the decrease in leaf NO3- reduction when photosynthesis is inhibited by CO2 deprivation, but not in darkness. Plant Physiol 115: 623–630

    PubMed  CAS  Google Scholar 

  • Lillo C, Kazazaic S, Ruoff P, Meyer C (1997) Characterization of nitrate reductase from light-and dark-exposed leaves. Plant Physiol 114: 1377–1383

    PubMed  CAS  Google Scholar 

  • Lu J-1, Ertl JR, Chen CM (1990) Cytokinin enhancement ofthe light induction ofnitrate reductase transcript levels in etiolated barley leaves. Plant Mol Biol 12: 585–594

    Article  Google Scholar 

  • Lu JL, Ertl JR Chen CM (1992) Transcriptional regulation of nitrate reductase messenger RNA levels by cytokinin-abscisic acid interactions in etiolated barley leaves. Plant Physiol 98: 1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Campbell WH, Schneider G, Lindqvist Y (1994) Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationships to other flavoprotein reductases. Structure 2: 809–821

    Article  PubMed  CAS  Google Scholar 

  • Luque I, Flores E, Herrero A (1993) Nitrite reductase gene from Synechococcus Sp PCC-7942–homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol 21: 1201–1205

    Article  PubMed  CAS  Google Scholar 

  • McCormac A, Whitelam G, Smith H (1992) Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light. Planta 188: 173–181

    Article  CAS  Google Scholar 

  • MacKintosh C (1992) Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim Biophys Acta 1137: 121–126

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh C (1998) Regulation of plant nitrate assimilation: from ecophysiology to brain proteins. New Phytol 139: 153–159

    Article  CAS  Google Scholar 

  • MacKintosh C, Douglas P, Lillo C (1995) Identification of a protein that inhibits the phosphorylated form of nitrate reductase from spinach (Spinacia oleracea) leaves. Plant Physiol 107: 451–457

    PubMed  CAS  Google Scholar 

  • Matt P, Schurr U, Krapp A, Stitt M (1998) Growth of tobacco in short day conditions leads to high starch, low sugars, altered diurnal changes of the Nia transcript and low nitrate reductase activity, and an inhibition of amino acid synthesis. Planta 207, 27–41

    Article  PubMed  CAS  Google Scholar 

  • Mendel RR (1997) Molybdenum cofactor of higher plants: biosynthesis and molecular biology. Planta 203: 399–405

    Article  PubMed  CAS  Google Scholar 

  • Mendel RR, Müller AJ (1985) Repair in vitro of nitrate reductase-deficient tobacco mutants (cnxA) by molybdate and by molybdenum cofactor Planta 163: 370–375

    CAS  Google Scholar 

  • Meyer C, Caboche M (1998) Manipulation of nitrogen metabolism. In: Lindsey K (ed) Transgenic plant research. Harwood Academic Publ, London, pp 125–133

    Google Scholar 

  • Meyer C, Levin J M, Roussel J-M, Rouzé P (1991) Mutational and structural analysis of the nitrate reductase heme domain of Nicotiana plumbaginifolia. J Biol Chem 266: 20561–20566

    PubMed  CAS  Google Scholar 

  • Meyer C, Pouteau S, Rouzé P, Caboche M (1994) Isolation and molecular characterization of dTnpl, a mobile and defective transposable element of Nicotiana plumbaginifolia. Mol Gen Genet 242: 194–200

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Gonneau M, Caboche M, Rouzé P (1995) Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase. FEBS Lett 370: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Miflin BJ (1974) The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol 54: 550–555

    Article  PubMed  CAS  Google Scholar 

  • Mohr H, Neininger A, Seith B (1992) Control of nitrate reductase and nitrite reductase gene expression by light, nitrate and a plastidic factor. Bot Acta 105: 81–89

    CAS  Google Scholar 

  • Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A, MacKintosh C (1996) Phosphorylated nitrate reductase from spinach leaves is inhibited by 14–3–3 proteins and activated by fusicoccin. Curr Biol 6: 1104 – 1113

    Article  PubMed  CAS  Google Scholar 

  • Müller AI, Mendel RR (1989) Biochemical and somatic cell genetics of nitrate reduction in Nicotiana. In: Wray JL, Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. Oxford Science Publ, Oxford, pp 166–185

    Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14–3–3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889 – 897

    Article  PubMed  CAS  Google Scholar 

  • Neame PJ, Barber MJ (1989) Conserved domains in molybdenum hydroxylases. J Biol Chem 264: 20894–20901

    PubMed  CAS  Google Scholar 

  • Neininger A, Back E, Bichler J, Schneiderbauer A, Mohr H (1994) Deletion analysis of a nitrite reductase promoter from spinach in transgenic tobacco. Planta 194: 186–192

    Article  CAS  Google Scholar 

  • Nussaume L, Vincentz M, Meyer C, Boutin JP, Caboche M (1995) Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion. Plant Cell 7: 611–621

    PubMed  CAS  Google Scholar 

  • Oostinder-Braaksma FJ, Feenstra WJ (1973) Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat Res 19: 175–185

    Article  Google Scholar 

  • Padidam M, Venkatesvarlu K, Johri MM (1991) Ammonium represses NADPH- nitratereductase in the moss Funaria hygrometrica. Plant Sci 75: 184–194

    Article  Google Scholar 

  • Pelsy F, Caboche M (1992) Molecular genetics of nitrate reductase in higher plants. Adv Genet 30: 1–40

    Article  CAS  Google Scholar 

  • Pelsy F, Gonneau M (1991) Genetic and biochemical analysis of intragenic complementation events among nitrate reductase apoenzyme-deficient mutants of Nicotiana plumbaginifolia. Genetics 127: 199–204

    PubMed  CAS  Google Scholar 

  • Pigaglio E, Durand N, Meyer C (1999) A conserved acidic motif in the N–terminal domain of nitrate reductase is necessary for the inactivation of the enzyme in the dark by phosphorylation and 14–3–3 binding. Plant Physiol 119: 219 – 229

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim ML, Caspar T, Quail PH, McClung CR (1993) Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol 23: 349–364

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Bate NJ, Sivasankar S, Rothstein S (1997) Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol Biol 34: 465–476

    Article  PubMed  CAS  Google Scholar 

  • Redinbaugh MG, Campbell WH (1985) Quaternary structure and composition of squash NADH:nitrate reductase. J Biol Chem 260: 3380–3385

    PubMed  CAS  Google Scholar 

  • Rouzé P, Caboche M (1992) Nitrate reduction in higher plants: molecular approaches to function and regulation. In: Wray JL (ed) Inducible plant proteins: their biochemistry and molecular biology. Cambridge University Press, Cambridge, pp 45–77

    Chapter  Google Scholar 

  • Sakakibara H, Takei K, Sugiyama T (1996) Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is a prosthetic group of nitrite reductase. Plant J 10: 883–892

    Article  PubMed  CAS  Google Scholar 

  • Sander L, Jensen PE, Back LF, Stummann BJ, Henningsen KW (1995) Structure and expression of a nitrite reductase gene from bean (Phaseolus vulgaris) and promoter analysis in transgenic tobacco. Plant Mol Biol 27: 165–177

    Article  PubMed  CAS  Google Scholar 

  • Scheible W-R, Gonzales-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Schulze E-D, Stitt M (1997) Tobacco mutants with a decreased number of functional nia-genes compensate by modifing the diurnal regulation transcription, post-translational modification and turnover of nitrate reductase. Planta 203, 305–319

    Article  Google Scholar 

  • Schnorr KM, Juricek M, Huang C, Culley D, Kleinhofs A (1991) Analysis of barley nitrate reductase cDNA and genomic clones. Mol Gen Genet 227: 411–416

    Article  PubMed  CAS  Google Scholar 

  • Schuster C, Mohr H (1990) Appearance of nitrite reductase mRNA in mustard seedling cotyledons is regulated by phytochrome. Planta 181: 327–334

    CAS  Google Scholar 

  • Shiraishi N, Sato T, Ogura N, Nakagawa H (1992) Control by glutamine of the synthesis of nitrate reductase in cultured spinach cells. Plant Cell Physiol 33: 727–731

    CAS  Google Scholar 

  • Siegel LM, Wilkerson JO (1989) Structure and function of spinach ferredoxin-nitrite reductase. In: Wray JL, Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. Oxford Science Publ, Oxford, pp 263–283

    Google Scholar 

  • Sivasankar S, Oaks A (1996) Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiol Biochem 34: 609–620

    CAS  Google Scholar 

  • Solomonson LP Barber MJ (1990) Assimilatory nitrate reductase: functional prop- erties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41: 225–253

    Article  CAS  Google Scholar 

  • Stallmeyer B, Nerlich A, Schiemann J, Brinkman H, Mendel RR (1995) Molybdenum cofactor biosynthesis: the Arabidopsis cDNA cnxl encodes a multifunctional two-domain protein homologous to a mammalian neuroprotein, the insect protein Cinnamon and three E. coli proteins. Plant J 8: 751–762

    Article  PubMed  CAS  Google Scholar 

  • Stoehr C (1999) Relationships of nitrate supply with grow rate, plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 22: 169–177

    Article  Google Scholar 

  • Streit L, Martin BA, Harper JE (1987) A method for the separation and purification of the three forms of nitrate reductase present in wild-type soybean leaves. Plant Physiol 84: 654–657

    Article  PubMed  CAS  Google Scholar 

  • Su W, Mertens JA, Kanamaru K, Campbell WH, Crawford NM (1997) Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris. Pant Physiol 115: 1135–1143

    Article  CAS  Google Scholar 

  • Suty L, Moureaux T, Leydecker MT, Delaserve BT (1993) Cytokinin affects nitrate reductase expression through the modulation of polyadenylation of the nitrate reductase messenger RNA transcript. Plant Sci 90: 11–19

    Article  CAS  Google Scholar 

  • Suzuki A, Oaks A, Jacquot JP, Vidal J, Gadal P (1985) An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase. Plant Physiol 78: 374–378

    Article  PubMed  CAS  Google Scholar 

  • Truong H-N, Meyer C, Daniel-Vedele F (1991) Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem J 278: 393–397

    PubMed  CAS  Google Scholar 

  • Van Camp W, Van Montagu M, Inzé D (1998) H2O2 and NO: redox signals in disease resistance. Trends Plant Sci 3: 330–334

    Article  Google Scholar 

  • Vaucheret H, Kronenberger J, Rouzé P, Caboche M (1989) Complete nucleotide sequence of the two homologous tobacco nitrate reductase genes. Plant Mol Biol 12: 597–600

    Article  CAS  Google Scholar 

  • Vaucheret H, Marion-Poll A, Meyer C, Faure JD, Marin E, Caboche M (1992) Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Mol Gen Genet 235: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Vincentz M, Caboche M (1991) Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO J 10: 1027–1035

    PubMed  CAS  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker M T, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression of Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Weiner H, Kaiser W (1999) 14–3–3 proteins control proteolysis of nitrate reductase in spinach leaves. FEBS Lett 455: 75 – 78

    Google Scholar 

  • Wray JL (1989) Molecular and genetic aspects of nitrite reduction in higher plants. In: Wray JL and Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. Oxford Science Publ, Oxford, pp 244–262

    Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIAI and NIA2. Mol Gen Genet 239: 289–297

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4: 128–129

    Article  PubMed  Google Scholar 

  • Yu X, Sukumaran S, Marton L (1998) Differential expression of the Arabidopsis Nial and Nia2 genes. Cytokinin-induced nitrate reductase activity is correlated with increased Nial transcription and mRNA levels. Plant Physiol 116: 1091–1096

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, C., Stitt, M. (2001). Nitrate Reduction and signalling. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics