Skip to main content

The Biochemistry and Molecular Biology of Seed Storage Proteins

  • Chapter
Plant Nitrogen

Abstract

Most plants synthesise proteins in their organs of reproduction and propagation, such as seeds of gymnosperms and angiosperms. Storage proteins are usually located in two tissues. In dicotyledonous plants they may be located in the diploid cotyledons (exalbuminous), in the triploid endosperm (albuminous) or, occasionally, in both tissues. In monocotyledonous cereals they are primarily located in the triploid endosperm tissue. They are deposited in high amounts in the seed, in discrete deposits (protein bodies) and survive desiccation for long periods of time. In most cases, storage proteins lack any other biological activity and simply provide a source of nitrogen, sulphur and carbon skeletons for the developing seedling (Shotwell and Larkins 1989; Shewry 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albani D, Hammond-Kosack MCU, Smith C, Conlan S, Colot V, Holdsworth M Bevan MW (1997) The wheat transcriptional activator SPA: seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9: 171–184

    PubMed  CAS  Google Scholar 

  • Altenbach SB, Pearson KW, Meecker G, Staraci LC, Sun SSM (1989) Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol Biol 13: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Altenbach SB, Kuo C-C, Staraci LC, Pearson KW, Wainwright C, Georgescu A, Townsend J (1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 18: 235–245

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil K (1996) Integration and expression of the high-molecular-weight glutenin subunit IAxl gene into wheat. Nat Biotechnoe 14 1155–1159

    Article  CAS  Google Scholar 

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Rybushkina N, Shewry PR, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl genet 100: 319–327

    Article  CAS  Google Scholar 

  • Andrews JL, Skerritt JH (1994) Quality-related epitopes of high Mr subunits of wheat glutenin. J Cell Sci 19: 219–230

    CAS  Google Scholar 

  • Argos P, Narayana SVL, Nielsen NC (1985) Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J 4: 1111–1117

    PubMed  CAS  Google Scholar 

  • Autran JC (1994) Size-exclusion high-performance liquid chromatography for rapid examination of size differences of wheat and cereal proteins. In: Kruger JE, Bietz JA (eds) HPLC of cereal and legume proteins. American Association of Cereal Chemists, St Paul, MN, pp 326–372

    Google Scholar 

  • Autran JC, Hamer RJ, Plijter JJ Pogna NE (1997) To explore and improve the industrial use of wheats. Cereal Foods World 42: 216–227

    CAS  Google Scholar 

  • Badley RA, Atkinson D, Hauser H, Oldani D, Green JP, Stubbs JM (1975) The structure, physical and chemical properties of the soybean protein glycinin. Biochim Biophys Acta 412: 214–228

    Article  PubMed  CAS  Google Scholar 

  • Barro F, Rooke L, Békés F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Bar-celo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15: 1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Bartels D,. Thompson RD (1986) Synthesis of messenger RNAs coding for abundant endosperm proteins during wheat grain development. Plant Sci 46: 117125

    Google Scholar 

  • Baud F, Pebay-Peyroula E, Cohen-Addad C, Odani S, Lehmann MS (1993) Crystal structure of a hydrophobic protein from soybean; a member of a new cysteinerich family. J Mol Biol 231: 77–887

    Article  Google Scholar 

  • Bäumlein H, Wobus U, Pustell J, Kafatos FC (1986) The legumin gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucleic Acids Res 14: 2707–2720

    Article  PubMed  Google Scholar 

  • Bäumlein H, Nagy I, Villaroel R, Inze D, Wobus U (1992) Cis-analysis of a seed protein gene promoter: The conservative RY repeat CATGCAT within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J 2: 233–239

    PubMed  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14: 875–879

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal C, Stone PJ, Gras PW, Békés F, Clarke B, Barlow EWR, Appels R, Wrigley CW (1998) Heat-shock protein 70 and dough-quality changes resulting from heat stress during grain filling in wheat. Cereal Chem 75: 43–50

    Article  CAS  Google Scholar 

  • Boston RS, Fontes EBP, Shank BB, Wrobel RL (1991) Increased expression of the maize immunoglobulin binding protein homologue b-70 in three zein regulatory mutants. Plant Cell 3: 497–505

    PubMed  CAS  Google Scholar 

  • Boulter D, Derbyshire E (1978) The general properties, classification and distribution of plant proteins. In: Norton G (ed) Plant proteins. Butterworths, London, pp 3–24

    Google Scholar 

  • Breu V, Guerbette F, Kader JC, Kannangara CG, Svensson B, Von Wettstein-Knowles P. (1989) A 10 kD barley basic protein transfers phosphatidylcholine from liposomes to mitochondria. Carlsberg Res Commun 54: 81–84

    Article  CAS  Google Scholar 

  • Bright SWJ, Shewry PR (1983) Improvement of protein quality in cereals. CRC Crit Rev Plant Sci 1: 49–93

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Galili G, Knudsen S, Holm PB (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol Biol 32: 611–620

    Article  PubMed  CAS  Google Scholar 

  • Bushuk W, MacRitchie F (1989) Wheat proteins: aspects of structure that determine breadmaking quality. In: Dixon-Phillips R, Finley JW (eds) Protein quality and the effects of processing. Marcel Dekker, New York, pp 345–369

    Google Scholar 

  • Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC (1989) Regulation of (3-glucuronidase expression in transgenic tobacco by an A/T-rich, cis-acting sequence found upstream of a French bean 13-phaseolin gene. Plant Cell 1: 839–853

    PubMed  CAS  Google Scholar 

  • Bustos MM, Begum D, Kalkan FA, Battraw MJ, Hall TC (1991) Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J 10: 1469–1479

    PubMed  CAS  Google Scholar 

  • Casey R (1999) Distribution and some properties of seed globulins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Dordrecht, The Netherlands, pp 159–169

    Chapter  Google Scholar 

  • Casey R and Domoney C (1999) Pea globulins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Dordre cht, The Netherlands, pp 171–208

    Chapter  Google Scholar 

  • Casey R, Domoney C, Ellis N (1986) Legume storage proteins and their genes. Oxford Sury Plant Mol Cell Biol 3: 1–95

    CAS  Google Scholar 

  • Casey R, Domoney C, Ellis N, Turner S (1988) The structure, expression and arrangement of legumin genes in pea. Biochem Physiol Pflanz 183: 173–180

    CAS  Google Scholar 

  • Cheftel J.-C, Cuq J-L., Lorient D (1985) Proteines alimentaires.. Technique et Documentation, Lavoisier-APRIA, Paris, 309 pp

    Google Scholar 

  • Ciaffi M, Margiotta B, Colaprico G, de Stefanis E, Sgrulletta D, Lafiandra D (1995) Effect of high temperatures during grain filling on the amount of insoluble proteins in durum wheat J Genet Breed 49: 285–296

    CAS  Google Scholar 

  • Ciaffi M, Lee YK, Tamas L, Gupta R, Appels R (1998) Molecular analysis of low Mr glutenin genes in Triticum durum. In: Gueguen J, Popineau (eds) Plant proteins from European crops — food and non-food applications. Springer, Berlin Heidelberg New York, pp 58–63

    Google Scholar 

  • Coleman CE, Larkins BA (1999) Prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, The Netherlands, pp 109–139.

    Google Scholar 

  • Damidaux R, Autran JC, Grignac P, Feillet P (1978) Mise en évidence de relations applicables en sélection entre l’électrophorégramme des gliadines et les propriétés viscoélastiques du gluten de Triticum durum Desf. C R Acad Sci Paris Sér D 287: 701–704

    Google Scholar 

  • Damodaran S, Kinsella JE (1982) Effects of conglycinin on the thermal aggregation of glycinin. J Agric Food Chem 30: 812–817

    Article  CAS  Google Scholar 

  • Danielsson CE (1949) Seed globulins of the Gramineae and Leguminoseae. Biochem J 44: 387–400

    PubMed  CAS  Google Scholar 

  • Das OP, Messing JW (1987) Allelic variation and differential expression at the 27kilodalton zein locus in maize. Mol Cell Biol 7: 4490–4497

    PubMed  CAS  Google Scholar 

  • de Freitas FA, Yunes JA, da Silva MJ, Arruda P, Leite A (1994) Structural characterization and promoter activity analysis of the y-kafirin gene family from sorghum. Mol Gen Genet 245: 177–186

    Article  PubMed  Google Scholar 

  • Deshpande SS, Damodaran S (1990) Food legumes: Chemistry and technology. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 10. American Association of Cereal Chemists, St Paul, Minnesota, pp 147–241

    Google Scholar 

  • Dickinson CD, Hussein EHA, Nielsen NC (1989) Role of posttranslational cleavage in glycinin assembly. Plant Cell 1: 459–469

    PubMed  CAS  Google Scholar 

  • Doll H (1984) Nutritional aspects of cereal proteins and approaches to overcome their deficiences. Philos Trans R Soc Ser B 304: 373–380

    Article  CAS  Google Scholar 

  • Domoney C, Casey R (1985) Measurement of gene number for seed storage proteins in Pisum. Nucleic Acids Res 13: 687–699

    Article  PubMed  CAS  Google Scholar 

  • Domoney C, Ellis THN, Davies DR (1986) Organization and mapping of legumin genes in Pisum. Mol Gen Genet 202: 280–285

    Article  CAS  Google Scholar 

  • Dubreil L, Gaborit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D (1998) Spatial and temporal distibution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-pecific lipid transfer protein (ns-LTPIet) of Triticum aestivum seeds. Relationships with their in vitro anti-fungal properties. Plant Sci 138: 121–135

    Article  CAS  Google Scholar 

  • Duffus CM, Cochrane MP (1992) Grain structure and composition. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 291–317

    Google Scholar 

  • Dunwell JM (1998) Cupins: A new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev 15: 1–32

    PubMed  CAS  Google Scholar 

  • Egorov TA, Odintsova TI, Musolyamov A Kh, Fido R., Tatham AS, Shewry PR (1996) Disulphide structure of a sunflower seed albumin: conserved and variant disulphide bonds in the cereal prolamin superfamily. FEBS Lett 396: 285–288

    Article  PubMed  CAS  Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Bio/Technology 13: 577–582

    Article  PubMed  CAS  Google Scholar 

  • Field JM, Shewry PR, Miflin BJ (1983) Solubilisation and characterization of wheat gluten proteins: correlations between the amount of aggregates proteins and baking quality. J Sci Food Agric 34: 370–377

    Article  PubMed  CAS  Google Scholar 

  • Fontes EBP, Shank BB, Wrobel RL, Moose SP, O’Brian GR, Wurtzel ET, Boston RS (1991) Characterization of an immunoglobulin binding protein homologue in the maize floury-2 endosperm mutant. Plant Cell 3: 483–496

    PubMed  CAS  Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res 13: 7327–7339

    Article  PubMed  CAS  Google Scholar 

  • Gautier M-F, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25: 43–57

    Google Scholar 

  • Genov N, Goshev I, Nikolova D, Georgieva DN, Filippi B, Svendsen I (1997) A novel thermostable inhibitor of trypsin and subtilisin from the seeds of Brassica nigra: amino acid sequence, inhibitory and spectroscopic properties and thermostability. Biochim Biophys Acta 1341: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Gibbs PEM, Strongin KB, McPherson A (1989) Evolution of legume seed storage proteins — domain common to legumins and vicilins is duplicated in vicilins. Mol Biol Evol 6: 614–623

    PubMed  CAS  Google Scholar 

  • Giddey C (1983) Phenomena involved in the “texturization” of vegetable proteins and various technological processes used. In: Bodwell CE, Petit L (eds) Plant proteins for human foods. Martinus Nijhoff/Dr W. Junk, The Hague, pp 221–233

    Google Scholar 

  • Giese H, Hopp E (1984) Influence of nitrogen nutrition on the amount of hordein, protein Z and (3-amylase messenger RNA in developing endosperms of barley. Carlsberg Res Commun 49: 365–383

    Article  CAS  Google Scholar 

  • Gincel E, Simorre J-P, Caille A, Marion D, Ptak M, Voyelle F (1994) Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur J Biochem 226: 413422

    Google Scholar 

  • Giroux MJ, Morris CJ (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components of puroindoline-a and b. Proc Natl Acad Sci USA 95: 6262–6266

    Article  PubMed  CAS  Google Scholar 

  • Gomar J, Petit MC, Sodano P, Sy D, Marion D, Kader JC, Vovelle F, Ptak M (1996) Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Sci 5: 565–577

    Article  PubMed  CAS  Google Scholar 

  • Gueguen J (1983) Legume seed protein extraction, processing, and end product characteristics. In: Bodwell CE, Petit L (eds) Plant proteins for human foods. Martinus Nijhoff/Dr W Junk, The Hague, pp 63–99

    Google Scholar 

  • Gueguen J, Popineau Y (1998) Plant proteins from European crops— food and non-food applications. Springer, Berlin Heidelberg New York, 339 pp

    Google Scholar 

  • Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB Tatham AS, Shewry PR (1992) Analysis of HMW glutenin subunits encoded by chromosome lA of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83: 373–378

    Article  CAS  Google Scholar 

  • Hall TC, Chandrasekharan MB Guofu L (1999) Phaseolin, its past, properties, regulation and future. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, The Netherlands, pp 209–240

    Google Scholar 

  • Hammond-Kosack MCU, Holdsworth MJ, Bevan MW (1993) In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. EMBO J 12: 545–554

    Google Scholar 

  • Hargreaves J, Popineau Y, Cornec M, Lefebvre J (1996) Relationships between aggregative, viscoelastic and molecular properties in gluten from genetic variants of bread wheat. Int J Biol Macromol 18: 69–75

    Article  PubMed  CAS  Google Scholar 

  • Kasarda DD (1989) Glutenin structure in relation to wheat quality. In: Pomeranz Y (ed) Wheat is unique: structure, composition, processing, end-use properties, and products. American Association of Cereal Chemists, St Paul, Minnesota, pp 277–302

    Google Scholar 

  • Kasarda DD, Autran J-C, Lew E.J-L, Nimmo CC, Shewry PR (1983) N-terminal amino acid sequences of w-gliadins and w-secalins: implications for the evolution of prolamin genes. Biochim Biphys Acta 747: 138–150

    Article  CAS  Google Scholar 

  • Kasarda DD, King G, Kumosinski TF (1994) Computer molecular modeling of HMW-glutenin subunits. In: Molecular modeling. ACS Symposium Series No 576, American Chemical Society, Washington, DC, pp 209–220

    Google Scholar 

  • Keeler SJ, Maloney CL, Webber PY, Patterson C, Hirata LT, Falco SC, Rice JA (1997) Expression of de novo high-lysine a-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of trans-genic tobacco plants. Plant Mol Biol 34: 15–29

    Article  PubMed  CAS  Google Scholar 

  • Kermode AR, Bewley JD (1999) Synthesis, processing and deposition of seed proteins: the pathway of protein synthesis and deposition in the cell. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, The Netherlands, pp 807–841

    Google Scholar 

  • Ko T-P, Ng JD, McPherson A (1993) The three-dimenstional structure of canavalin from jack bean (Canavalia ensiformis). Plant Physiol 101: 729–744

    Article  PubMed  CAS  Google Scholar 

  • Kreis M, Shewry PR (1989) Unusual features of seed protein structure and evolution. Bio-Essay 10: 201–207

    CAS  Google Scholar 

  • Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183: 499–502

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC (1999) Structural relationships of 7S and 11S globulins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, The Netherlands, pp 517–541

    Google Scholar 

  • Lawrence MC, Suzuki E, Varghese JN, Davis PC, Van Donkelaar A, Tuloch PA. Colman PM (1990) The three-dimensional structure of the seed storage protein phaseolin at 3 A resolution. EMBO J 9: 9–15

    Google Scholar 

  • Lawrence MC, Izard T, Beuchat RJ, Blagrove M, Coleman P (1994) Structure of phaseolin at 2.2 A resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol 238: 748–776

    Article  PubMed  CAS  Google Scholar 

  • Lelievre JM, Oliveira LO, Nielsen NC (1992) 5’-CATGCAT-3’ elements modulate the expression of glycinin genes. Plant Physiol 98: 387–391

    Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119: 1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Lew E J-L, Kuzmicky DD, Kasarda DD (1992) Characterization of low-molecularweight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem 69: 508–515

    CAS  Google Scholar 

  • Lillford PJ (1981) Extraction processes and their effect on protein functionality. In: Bodwell CE, Petit L (eds) Plant proteins for human food. Martinus Nijhoff/Dr W. Junk, The Hague, pp 199–205

    Google Scholar 

  • Lohmer S, Maddaloni M, Motto M, Di Fonzo N, Hartings H, Salamini F, Thompson RD (1991) The maize regulatory locus Opaque-2 encodes a DNA binding protein which activates the transcription of the b-32 gene. EMBO J 10: 617–624

    PubMed  CAS  Google Scholar 

  • Lusas E (1998) Achievements, status and challenges in food protein processing. In: Guegen J, Popineau Y (eds) Plant proteins from European crops — food and non-food applications. Springer, Berlin Heidelberg New York, pp 257–264

    Google Scholar 

  • MacRitchie F (1998) Protein composition and physical properties of wheat flour doughs. In: Guegen J, Popineau Y (eds) Plant proteins from European crops — food and non-food applications. Springer, Berlin Heidelberg New York, pp 113–119

    Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composi- tion and increases lysine content of maize endosperm. Science 145: 279–280

    Article  PubMed  CAS  Google Scholar 

  • Miflin BJ, Field JM, Shewry PR (1983) Cereal storage proteins and their effect on technological properties. In: Daussant J, Mossé J,. Vaughan J (eds) Seed proteins. Phytochemical Society of Europe Symposia, Series n° 20. Academic Press, London, pp 255–319

    Google Scholar 

  • Misra PS, Mertz ET, Glover DV (1975) Studies on corn proteins. VI. Endosperm protein changes in single and double endosperm mutants of maize. Cereal Chem 52: 161

    CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94: 8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Knudsen S (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4: 343–355

    Article  PubMed  Google Scholar 

  • Müller S, Vensel WH, Kasarda DD, Köhler P Wieser H (1998) Disulphide bonds of adjacent cysteine residues in low molecular weight subunits of wheat glutenin. J Cereal Sci 27: 109–116

    Article  Google Scholar 

  • Munck L (1992) The case of high-lysine barley breeding. In: Shewry PR (ed) Barley genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, pp 573–601

    Google Scholar 

  • Osborne TB (1907) The proteins of the wheat kernel. Carnegie Inst. Washington, Washington DC, Publ No 84

    Google Scholar 

  • Osborne TB (1924) The vegetable proteins. Longmans, Green, London

    Google Scholar 

  • Parker ML (1980) Protein body inclusion in developing wheat endosperm. Ann Bot 46: 29–36

    Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol 38: 141–153

    Article  CAS  Google Scholar 

  • Payne PI, Seekings JA (1996) Characterisation of Galahad-6, Galahad-7 and Galahad-8, isogenic lines that contain only one HMW glutenin subunit. In: Wrigley CW (ed) Gluten ‘96, Proc 6th Int Gluten Workshop, 1–6 September, Sydney, Australia, pp 14–17

    Google Scholar 

  • Payne PI, Jackson EA, Holt LM, Law CN (1984) Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes lA and 1B in wheat. Theor Appl Genet 67: 235–243

    Article  CAS  Google Scholar 

  • Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40: 51–65

    Article  CAS  Google Scholar 

  • Pechanek U, Karger A, Groger S, Charvat B, Schöggl G, Lelley T (1997) Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmaking quality of wheat. Cereal Chem 74: 800–805

    Article  CAS  Google Scholar 

  • Pogna N, Lafiandra D, Feillet P and Autran J-C (1988) Evidence for a direct causal effect of low molecular weight subunits of glutenins on durum viscoelasticity in durum wheats. J Cereal Sci, 7: 211–214

    Article  CAS  Google Scholar 

  • Popineau Y, Cornec M, Lefebvre J, Marchylo B (1993) Influence of HMW glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat Sicco. J Cereal Sci 19: 231–241

    Article  Google Scholar 

  • Quayle T, Feix G (1992) Functional analysis of the -300 region of maize zein genes. Mol Gen Genet 23: 369–374

    Article  Google Scholar 

  • Randall PJ, Moss HJ (1990) Somme effects of temperature regime during grain filling on wheat quality. Aust J Agric Res 41: 603–617

    Article  Google Scholar 

  • Rico M, Bruix M, Gonzalez C, Monsalve RI, Rodriguez R. (1996) 1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein. Biochemistry 35: 15672–15682

    Google Scholar 

  • Rooke L, Békés F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in highly elastic dough. J Cereal Sci 30: 115–120

    Article  CAS  Google Scholar 

  • Rubin R, Levanony H, Galili G (1992) Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiol 99: 718–724

    Article  PubMed  CAS  Google Scholar 

  • Saalbach I, Waddell D, Pickardt T, Schieder O, Muntz K (1995) Stable expression of the sulphur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seeds. J Plant Physiol 145: 674–681

    Article  CAS  Google Scholar 

  • Salunkhe DK, Chavan JK, Kadam SS (1992) World oilseeds — chemistry, technology, and utilisation. Van Nostrand Reinhold, New York, 554 pp

    Google Scholar 

  • Schmidt RJ, Burr FA, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus Opaque-2. Science 238: 960–963

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RJ, Ketudat M, Aukerman M, Hoschek G (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kDa zein genes. Plant Cell 4: 689–700

    Google Scholar 

  • Shen B, Carneiro N, Torres-Jerez I, Stevenson B, McCreery T, Helentjaris T, Baysdorfer C, Almira E, Ferl RJ, Habben JE, Larkins BA (1994) Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Mol Biol 26: 1085–1101

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR (1995) Plant storage proteins. Biol Rev 70: 375–426

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR (1998) The HMW subunits and their role in determining the functional of wheat gluten and dough. In: Workshop on Biopolymer Science — Food and Non Food Applications, 28–30 September, Montpellier (France)

    Google Scholar 

  • Shewry PR, Casey R (eds) (1999) Seed proteins. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Shewry PR, Miflin BJ (1985) Seed storage proteins of economically important cereals. In:Pomeranz Y (ed) Advances in cereal science and technology, vol 7. American Association of Cereal Chemists, St Paul, Minnesota, USA, pp 1–83

    Google Scholar 

  • Shewry PR, Pandya M J (1999) The 2S albumins storage proteins. In Shewry PR,. Casey R (eds) Seed proteins. Kluwer Dordrecht, The Netherlands, pp 563–586

    Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267: 1–12

    PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS (1994a) Analysis of wheat proteins that determine breadmaking quality. Food Sci Technol Today 8: 31–36

    Google Scholar 

  • Shewry PR, Miles MJ, Tatham AS (1994b) The prolamin storage proteins of wheat and related species. Prog Biophys Mol Biol 61: 37–59

    PubMed  CAS  Google Scholar 

  • Shewry PR, Greenfield J, Buonocore F, Wellner N, Belton PS, Parchment O, Osguthorpe D, Tatham AS (1998) Conformational studies of the repetitive sequences of HMW subunits of wheat glutenin. In: Gueguen J, Popineau Y (eds) Plant proteins from European crops — food and non-food applications. Springer, Berlin Heidelberg New York, pp 120–125

    Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (1999) The prolamins of the Triticeae. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Dordrecht, The Netherlands, pp 35–78

    Chapter  Google Scholar 

  • Shewry PR, Tatham AS, Popineau Y (2000) The chemical basis of wheat grain quality. In: Autran JC, Hamer RJ (eds) Wheat Science and Technology in the European Union. IRTAC, Paris. In press

    Google Scholar 

  • Shotwell MA, Larkins BA (1989) The biochemistry and molecular biology of seed storage proteins. In: Marcus A (ed) The biochemistry of plants, vol 5. Academic Press, San Diego, pp 297–345

    Google Scholar 

  • Shutov AD, Kakhovskaya IA, Braun H, Bäumlein H, Muntz K (1995) Legumin-like and vicilin-like seed storage proteins: evidence for a common single-domain ancestral gene. J Mol Evol 41: 1057–1069

    Article  PubMed  CAS  Google Scholar 

  • Sissons MJ, Békés F, Skerritt JH (1998) Isolation and functionality testing of low molecular weight glutenin subunits. Cereal Chem 75: 30–36

    Article  CAS  Google Scholar 

  • Sörensen MB, Cameron-Mills V Brandt A (1989) Transcriptional and post-transcriptional regulation of gene expression in developing barley endosperm. Mol Gen Genet 217: 195–201

    Google Scholar 

  • Spencer D (1984) The physiological role of storage proteins in seeds. Philos Trans R Soc Ser B 304: 275–285

    Article  CAS  Google Scholar 

  • Strobl S, Mühlhahn P, Bernstein R, Wilscheck R, Maskos K, Wunderlich M, Huber R, Glockhuber R, Holak TA (1995) Determination of the three-dimensional structure of the bifunctional a-amylase/trypsin inhibitor from ragi seeds by NMR spectroscopy. Biochemistry 34: 8281–8293

    Article  PubMed  CAS  Google Scholar 

  • Svendsen I, Nicolova D, Goshev I, Genov N (1989) Isolation and characterization of a trypsin inhibitor from the seeds of kohlrabi (Brassica napus var. Rapifera) belonging to the napin family of storage proteins. Carlsberg Res Commun 54: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Svendsen I, Nicolova D, Goshev I, Genov N (1994) Primary structure, spectroscopic and inhibitory properties of a two-chain trypsin inhibitor from the seeds of charlock (Sinapis arvensis L), a member of the napin protein family. Int J Pept Protein Res 43: 425–430

    Article  PubMed  CAS  Google Scholar 

  • Tatham AS, Shewry PR, Belton PS (1990) Structural studies of cereal prolamins, including wheat gluten. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 10. American Association of Cereal Chemists, St Paul, Minn., USA, pp 1–78

    Google Scholar 

  • Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BPA, Broekaert WF. (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100: 1055–1058

    Google Scholar 

  • Terras FRG, Schoofs HME, Thevissen K, Osborn RW, Vanderleyden J, Cammue BPA, Broekaert WF (1993) Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103: 1311–1319

    PubMed  CAS  Google Scholar 

  • Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell 2: 1171–1180

    PubMed  CAS  Google Scholar 

  • Utsumi S (1992) Plant food protein engineering. Adv Food Nutr Res 36: 82–208

    Google Scholar 

  • Utsumi S, Gidamis AB, Mikami B, Kito M (1993) Crystallization and preliminary X-ray crystallographic analysis of the soybean proglycinin expressed in Escherichia coli. J Mol Biol 233: 177–178

    Article  PubMed  CAS  Google Scholar 

  • Utsumi S, Gidamis AB, Takenaka Y, Maruyama N, Adachi M, Mikami B (1996) Crystallization and X-ray analysis of normal and modified recombinant soybean proglycinins: three-dimensional structure of normal proglycinin at 6 A resolution. In: Parris N, Kato A, Creamer LK, Pearce J (eds) Macromolecular interactions in food technology. American Chemical Society, Washington, DC, pp 257–270

    Chapter  Google Scholar 

  • Weegels PL, Hamer RJ Schofield JD (1997) Depolymerisation and re-polymerisation of wheat glutenin during dough processing. II. Changes in composition. J Cereal Sci 25: 155–163

    Article  CAS  Google Scholar 

  • Wilde PI (1998) Modifying the interfacial behavior and functional characteristics of proteins. In: Guegen J, Popineau Y (eds) Plant proteins from European crops — food and non-food applications. Springer, Berlin Heidelberg New York, pp 105–112

    Google Scholar 

  • Wilson DR, Larkins BA (1984). Zein gene organization in maize and related grasses. J Mol Evol 29: 330–340

    Article  Google Scholar 

  • Wright DJ (1983) Comparative physical and chemical aspects of vegetable protein functionality. Qual Plant Plant Foods Hum Nutr 32: 389–400

    Article  CAS  Google Scholar 

  • Wright DJ. Bumstead MR (1984) Legume proteins in food technology. Philos Trans R Soc B 304: 381–393

    Article  Google Scholar 

  • Wrigley CW (1995) Identification of food-grain varieties. American Association of Cereal Chemists, St Paul, Minnesota, 283 pp

    Google Scholar 

  • Wrigley CW, du Cros DL, Fullington JG, Kasarda DD (1984) Changes in polypeptide composition and grain quality due to sulphur deficiency in wheat.J Cereal Sci 2: 15–24

    CAS  Google Scholar 

  • Xia J.-H, Kermode AR (1999) Analyses to determine the role of embryo immaturity in dormancy maintenance of yellow-cedar (Chamaecyparis nootkatensis) seeds: synthesis and accumulation of storage proteins and proteins implicated in desiccation tolerance. J Exp Bot 50: 107–118

    CAS  Google Scholar 

  • Youle RJ, Huang AHC (1981) Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Am J Bot 68: 44–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Autran, JC., Halford, N.G., Shewry, P.R. (2001). The Biochemistry and Molecular Biology of Seed Storage Proteins. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics