Skip to main content

Protein Hydrolysis and Nitrogen Remobilisation in Plant Life and Senescence

  • Chapter
Book cover Plant Nitrogen

Abstract

In plant cells, as in all other cells, proteins are submitted to permanent turnover, and the intracellular content of a given protein depends on its rate of both synthesis and degradation. The life time of most proteins is shorter than that of the cell. Thus, in young leaves of Lemna minor, the average half-life of protein was estimated to be 7 days, and it was shorter under stress conditions (Davies 1982). Such observations mean that nitrogen and amino acid fluxes are both cylic and permanent. Although protein turnover may appear wasteful, in terms of energy, numerous studies have shown that proteolysis provides multiple functions in cell physiology, and is an essential regulatory mechanism of cell metabolism and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamska I, Lindahl M, Roobolboza M, Andersson B (1996) Degradation of the light-stress protein is mediated by an ATP-independent, serine-type protease under low-light conditions. Eur J Biochem 236: 591–599

    Article  PubMed  CAS  Google Scholar 

  • Agustini V, McIntosh T, Malek L (1996) Ubiquitination and ATP levels in garden pea seeds. Physiol Plant 97: 463–468

    Article  CAS  Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133: 1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Bahrami AR, Gray JE (1999) Expression of a proteasome alphatype subunit gene during tobacco development and senescence. Plant Mol Biol 39: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Barakat S, Pearce DA, Sherman F, Rapp WD (1998) Maize contains a Lon protease gene that can partially complement a yeast pim-ldeletion mutant. Plant Mol Biol 37: 141–154

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF (1998) Handbook of proteolytic enzymes. Academic Press, New York

    Google Scholar 

  • Bleecker AB (1998) The evolutionary basis of leaf senescence: method to the madness? Curr Opin Plant Biol 1: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R., James F, Pradet A, Raymond P (1992) Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 384–395

    Google Scholar 

  • Brouquisse R, Gaudillère JP, Raymond P (1998) Induction of a carbon-starvationrelated proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol 117: 1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48: 181–199

    Article  Google Scholar 

  • Callis J (1995) Regulation of protein degradation. Plant Cell 7: 845–857

    PubMed  CAS  Google Scholar 

  • Chevalier C, Bourgeois E, Just D, Raymond P (1996a) Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L.) root tips. Plant J 9: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C, Lequerrec F, Raymond P (1996b) Sugar levels regulate the expression of ribosomal protein genes encoding protein S28 and ubiquitin-fused protein S27a in maize primary root tips. Plant Sci 117: 95–105

    Article  CAS  Google Scholar 

  • Clough RC, Jordan-Beebe ET, Lohman KN, Marita JM, Walker JM, Gatz C, Viers-tra RD (1999) Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation. Plant J 17: 155–167

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Holzer R, Feller U (1998) Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves. Physiol Plant 102: 192–200

    Article  CAS  Google Scholar 

  • Davies DD (1982) Physiological aspects of protein turnover. In: Boulter D, Parthier B (eds) Nucleic acids and proteins in plants. I. Structure, biochemistry and physiology of proteins. Encyclopedia of Plant Physiology. New series. Berlin Heidelberg New York, pp 189–228

    Google Scholar 

  • del Pozo JC, Estelle M (1999) Function of the ubiquitin-proteosome pathway in auxin response. Trends Plant Sci 4: 107–112

    Article  PubMed  Google Scholar 

  • Desimone M, Wagner E, Johanningmeier U (1998) Degradation of active-oxygenmodified ribulose-1,5-bisphosphate carboxylase/oxygenase by chloroplastic proteases requires ATP-hydrolysis. Planta 205: 459–466

    Article  CAS  Google Scholar 

  • Dieuaide Noubhani M, Canioni P, Raymond P (1997) Sugar-starvation-induced changes of carbon metabolism in excised maize root tips. Plant Physiol 115: 1505–1513

    Google Scholar 

  • Distefano S, Palma JM, Gomez M, Delrio LA (1997) Characterization of endoproteases from plant peroxisomes. Biochem J 327: 399–405

    PubMed  CAS  Google Scholar 

  • Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D (1996) Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol Biol 30: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13: 241–273

    CAS  Google Scholar 

  • Fischer A, Brouquisse R, Raymond P (1998) Influence of senescence and of carbohydrate levels on the pattern of leaf proteases in purple nutsedge (Cyperus rotundus). Physiol Plant 102: 385–395

    Article  CAS  Google Scholar 

  • Fu H, Doelling J, Rubin D, Vierstra R (1999) Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. Plant J 18: 529–539

    Article  PubMed  CAS  Google Scholar 

  • Gan SS, Amasino RM (1997) Making sense of senescence — molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113: 313–319

    PubMed  CAS  Google Scholar 

  • Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J (1994) Structure and promoter activity of a stress and developmentally regulated polyubiquitinencoding gene of Nicotiana tabacum. Gene 148: 195–202

    Article  PubMed  CAS  Google Scholar 

  • Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J (1998) Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10: 2063–2075

    PubMed  CAS  Google Scholar 

  • Glathe S, Kervinen J, Nimtz M, Li GH, Tobin GJ, Copeland TD, Ashford DA, Wlodawer A, Costa J (1998) Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.). J Biol Chem 273: 31230–31236

    Article  PubMed  CAS  Google Scholar 

  • Granell A, Gerais M, Carbonell J (1998) Plant cysteine proteinases in germination and senescence. In: Barrett AJ, Rawlings ND, Woesner JF (eds) Handbook of proteolytic enzymes. Academic Press, London, CD-rom, chap 199

    Google Scholar 

  • Guerrero C, Delacalle M, Reid MS, Valpuesta V (1998) Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Mol Biol 36: 565–571

    Article  PubMed  CAS  Google Scholar 

  • Hara-Nishimura I, Kinoshita T, Hiraiwa N, Nishimura M (1998) Vacuolar processing enzymes in protein-storage vacuoles and lytic vacuoles. J Plant Physiol 152: 668–674

    Article  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425–479

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Tomizawa K, Tanaka K, Matsui M, Kendrick RE, Sato T, Nakagawa H (1997) Characterization of 26S proteasome alpha-and beta-type and ATPase subunits from spinach and their expression during early stages of seedling development. Plant Mol Biol 34: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Jamai A, Chollet J, Delrot S (1994) Proton-peptide co-transport in broad bean leaf tissues. Plant Physiol 106: 1023–1031

    PubMed  CAS  Google Scholar 

  • James F, Brouquisse R, Suire C, Pradet A, Raymond P (1996) Purification and biochemical characterization of a vacuolar serine endopeptidase induced by glucose starvation in maize roots. Biochem J 320: 283–292

    PubMed  CAS  Google Scholar 

  • Jones ML, Larsen PB, Woodson WR (1995) Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Mol Biol 28: 505–512

    Article  PubMed  CAS  Google Scholar 

  • Kamachi K, Yamaya T, Hayakawa T, Mae T. Ojima K (1992) Changes in cytosolic glutamine synthetase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence. Plant Physiol 98: 1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Kervinen J (1998) Plant cysteine proteinases in germination and senescence. In: Barrett AJ, Rawlings ND, Woesner JF (eds) Handbook of proteolytic enzymes. Academic Press, London, CD-rom chap 278

    Google Scholar 

  • Kleber-Janke T, Krupinska K (1997) Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 203: 332–340

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Ireland RJ (1999) Nitrogen metabolism in plants. In: Singh BK (ed) Plant amino acids. Marcel Dekker, New York, pp 1–47

    Google Scholar 

  • Lupas A, Flanagan JM, Tamura T, Baumeister W (1997) Self-compartmentalizing proteases. Trends Biochem Sci 22: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum, L.) shoots in relation to nitrogen management and leaf senescence. Planta, in press

    Google Scholar 

  • Matile P (1997) The vacuole and cell senescence. In: Leigh RA, Sanders D, (eds) Advances in botanical research incorporating advances in plant pathology, vol 25. Academic Press, San Diego, pp 87–112

    Google Scholar 

  • Mitsuhashi W, Oaks A (1996) Localization of major endopeptidase activities in maize endosperms. J Exp Bot 47: 749–754

    Article  CAS  Google Scholar 

  • Morris K, Thomas H, Rogers LJ (1996) Endopeptidases during the development and senescence of Lolium temulentum leaves. Phytochemistry 41: 377–384

    Article  CAS  Google Scholar 

  • Nakashima K, Kiyosue T, Yamaguchi Shinozaki K, Shinozaki K (1997) A nuclear gene, erdl encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in A. thaliana. Plant J 12: 851–861

    Article  PubMed  CAS  Google Scholar 

  • Neubauer C (1993) Multiple effects of dithiothreitol on nonphotochemical fluorescence quenching in intact chloroplasts. Influence on violaxanthin de-epoxidase and ascorbate peroxidase activity. Plant Physiol 103: 575–583

    PubMed  CAS  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101: 746–753

    Article  Google Scholar 

  • Okita TW, Rogers JC (1996) Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol 47: 327–350

    Article  PubMed  CAS  Google Scholar 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572

    Article  PubMed  CAS  Google Scholar 

  • Peoples M, Dalling M (1988) The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Noodén L, Leopold AC (eds, Senescence and aging in plants. Academic Press, San Diego, pp 181–217

    Google Scholar 

  • Pérez- Rodriguez J, Valpuesta V (1996) Expression of glutamine synthetase genes during natural senescence of tomato leaves. Physiol Plant 97: 576–582

    Article  Google Scholar 

  • Roulin S, Feller U (1997) Light-induced proteolysis of stromal proteins in pea (Pisum sativum L) chloroplasts: requirement for intact organelles. Plant Sci 128: 31–41

    Article  CAS  Google Scholar 

  • Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206: 466–475

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Dewitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain C1pP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7: 1713–1722

    PubMed  CAS  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126: 419–448

    Article  CAS  Google Scholar 

  • Stadtman E (1992) Protein oxidation and aging. Science 257: 1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Staswick (1994) Storage proteins of vegetative plant tissues. Annu Rev Plant Physiol Plant Mol Biol 44: 303–322

    Article  Google Scholar 

  • Stieger PA, Feller U (1997) Degradation of stromal proteins in pea (Pisum sativum L.) chloroplasts under oxidising conditions. J Plant Physiol 151: 556–562

    Article  CAS  Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M, Hortensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13: 773–780

    Article  PubMed  CAS  Google Scholar 

  • Tournaire C, Kushnir S, Bauw G, Inze D, Teyssendier de la Serve B, Renaudin JP (1996) A thiol protease and an anionic peroxidase are induced by lowering cytokinins during callus growth in Petunia. Plant Physiol 111: 159–168

    CAS  Google Scholar 

  • Tziveleka L-A, Argyroudi-Akoyunoglou JH (1998) Implications of a developmental-stage-dependent thylakoid-bound protease in the stabilization of the light-harvesting pigment-protein complex serving photosystem II during thylakoid biogenesis in red kidney bean. Plant Physiol 117: 961–970

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32: 275–302

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Akio, Hamada K, Yokoi H, Watanabe Akira (1994) Biphasic and differential expression of cytosolic glutamine synthetase genes of radish during seed germination and senescence of cotyledons. Plant Mol Biol 26: 1807–1817

    Article  Google Scholar 

  • Wilson JB (1997) An evolutionary perspective on the “death hormone” hypothesis in plants. Physiol Plant 99: 511–516

    Article  CAS  Google Scholar 

  • Wingler A, Vonschaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light — Effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116: 329–335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brouquisse, R., Masclaux, C., Feller, U., Raymond, P. (2001). Protein Hydrolysis and Nitrogen Remobilisation in Plant Life and Senescence. In: Lea, P.J., Morot-Gaudry, JF. (eds) Plant Nitrogen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04064-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04064-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08731-8

  • Online ISBN: 978-3-662-04064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics