Entropy Values and Entropy Bounds

  • N. Chernov
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 101)

Abstract

We describe rigorous mathematical results on the Kolmogorov-Sinai entropy for Lorentz gases and hard ball systems (both finite and infinite). Exact formulas and asymptotic estimates of the entropy are discussed for various models.

Keywords

Entropy Manifold Posit Suspen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ab]
    L.M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873–875.MathSciNetMATHGoogle Scholar
  2. [Al]
    R. Alexander, Time evolution for infinitely many hard spheres, Commun. Math. Phys. 49 (1976), 217–232.CrossRefGoogle Scholar
  3. [B]
    P.R. Baldwin, The billiard algorithm and KS entropy, J. Phys. A 24 (1991), L941-L947.MathSciNetCrossRefMATHGoogle Scholar
  4. [BZD]
    H. van Beijeren, R. van Zon, and J. R. Dorfman, Kinetic theory estimates for the Kolmogorov-Sinai entropy, and the largets Lyapunov exponent for dilute hard-sphere gases and for dilute random Lorentz gases. A survey in this volume.Google Scholar
  5. [BGGS]
    G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory. Meccanica 15 (1980), 9–20.CrossRefMATHGoogle Scholar
  6. [BD]
    J.-P. Bouchaud and P. Le Doussal, Numerical study of a d-dimensional periodic Lorentz gas with universal properties, J. Statist. Phys. 41 (1985), 225–248.MathSciNetCrossRefGoogle Scholar
  7. [Bu]
    L. A. Bunimovich, Existence of transport coefficients, a survey in this volume.Google Scholar
  8. [CC]
    S. Chapman and T.G. Cowling, The mathematical theory of nonuniform gases, Cambridge U. Press, 1970.Google Scholar
  9. [CELS]
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, Steady-state electrical conduction in the periodic Lorentz gas, Commun. Math. Phys. 154 (1993), 569–601.MathSciNetCrossRefMATHGoogle Scholar
  10. [CL]
    N.I. Chernov and J.L. Lebowitz, Stationary nonequilibrium states in boundary driven Hamiltonian systems: shear flow, J. Statist. Phys. 86 (1997), 953–990.MathSciNetCrossRefMATHGoogle Scholar
  11. [C1]
    N. Chernov, Space-time entropy of infinite classical systems, In: Mathematical Problems of Statistical Mechanics and Dynamics, 125–137. Math. Appl. (Soviet Ser.), 6, Reidel, Dordrecht-Boston, Mass., 1986.CrossRefGoogle Scholar
  12. [C2]
    N.I. Chernov, A new proof of Sinai’s formula for entropy of hyperbolic billiards. Its application to Lorentz gas and stadium, Funct. Anal. Appl. 25 (1991), 204–219.MathSciNetCrossRefMATHGoogle Scholar
  13. [C3]
    N. Chernov, Entropy, Lyapunov exponents and mean-free path for billiards. J. Statist. Phys. 88 (1997), 1–29.MathSciNetCrossRefMATHGoogle Scholar
  14. [C4]
    N. I. Chernov, Sinai billiards under small external forces, submitted. The manuscript is available at http://www.math.uab.edu/chernov/pubs.html
  15. [CY]
    N. Chernov and L.-S. Young, Decay of correlations for Lorentz gases and hard balls, a survey in this volume.Google Scholar
  16. [Co]
    J. P. Conze, Entropie d’un Groupe abelien de Transformations, Z. Wahrsch. Verw. Geb., 25 (1972), 11–30.MathSciNetCrossRefMATHGoogle Scholar
  17. [DP]
    Ch. Dellago and H.A. Posch, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: numerical simulations, Phys. Rev. Lett. 78 (1997), 211.CrossRefGoogle Scholar
  18. [EW]
    J.J. Erpenbeck and W.W. Wood, Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results, Phys. Rev. A 26 (1982), 1648–1675.CrossRefGoogle Scholar
  19. [FOK]
    B. Friedman, Y. Oono and I. Kubo, Universal behavior of Sinai billiard systems in the small-scatterer limit, Phys. Rev. Lett. 52 (1984), 709–712.MathSciNetCrossRefGoogle Scholar
  20. [Gal]
    G. Galperin, On systems of locally interacting and repelling particles moving in space, Trudy MMO 43 (1981), 142–196.MathSciNetGoogle Scholar
  21. [Gas]
    D. Gass, Enskog theory for a rigid disk fluid, J. Chem. Phys.54 (1971), 1898–1902.CrossRefGoogle Scholar
  22. [KS]
    A. Katok and J.-M. Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lect. Notes Math., 1222, Springer, New York, 1986.MATHGoogle Scholar
  23. [LBD]
    A. Latz, H. van Beijeren, and J.R. Dorfman, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: kinetic theory, Phys. Rev. Lett. 78 (1997), 207.CrossRefGoogle Scholar
  24. [LW]
    C. Liverani, M. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics Reported 4 (1995), 130–202.MathSciNetCrossRefGoogle Scholar
  25. [ME]
    N. Martin and J. England, Mathematical theory of entropy, Encycl. Math. Its Appl. 12, Addison-Wesley, Reading Mass., 1981.Google Scholar
  26. [M]
    G. Matheron, Random sets and integral geometry, J. Wiley & Sons, New York, 1975.MATHGoogle Scholar
  27. [P]
    Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surv. 32 (1977), 55–114.MathSciNetCrossRefGoogle Scholar
  28. [Sa]
    L.A. Santaló, Integral geometry and geometric probability, Addison-Wesley Publ. Co., Reading, Mass., 1976.MATHGoogle Scholar
  29. [S1]
    Ya.G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv. 25 (1970), 137–189.MathSciNetCrossRefMATHGoogle Scholar
  30. [S2]
    Ya.G. Sinai, The construction of cluster dynamics for dynamical systems of statistical mechanics, Vest. Moscow Univ. 1 (1974), 152–158.MathSciNetGoogle Scholar
  31. [S3]
    Ya.G. Sinai, Entropy per particle for the system of hard spheres, Harvard Univ. Preprint, 1978.Google Scholar
  32. [S4]
    Ya.G. Sinai, Development of Krylov’s ideas, Afterwards to N.S. Krylov, Works on the foundations of statistical physics, Princeton Univ. Press, 1979, 239–281.Google Scholar
  33. [S5]
    Ya. G. Sinai, A remark concerning the thermodynamical limit of the Lyapunov spectrum, Intern. J. Bifurc. Chaos 6 (1996), 1137–1142.MathSciNetCrossRefMATHGoogle Scholar
  34. [SC]
    Ya.G. Sinai and N.I. Chernov, Entropy of a gas of hard spheres with respect to the group of space-time translations, Trudy Seminara Petrovskogo 8 (1982), 218–238. English translation in: Dynamical Systems, Ed. by Ya. Sinai, Adv. Series in Nonlinear Dynamics, Vol. 1, 1991.MathSciNetGoogle Scholar
  35. [V]
    L. N. Vaserstein, On systems of particles with finite range and/or repulsive interaction, Commun. Math. Phys. 69 (1979), 31–56.CrossRefGoogle Scholar
  36. [W]
    M.P. Wojtkowski, Measure theoretic entropy of the system of hard spheres, Ergod. Th. Dynam. Sys. 8 (1988), 133–153.MathSciNetMATHGoogle Scholar
  37. [Y]
    L.-S. Young, Ergodic theory of chaotic dynamical systems, XIIth International Congress of Mathematical Physics (ICMP’97) (Brisbane), 131–143, Internat. Press, Cambridge, MA, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • N. Chernov

There are no affiliations available

Personalised recommendations