Skip to main content

Decay of Correlations for Lorentz Gases and Hard Balls

  • Chapter
Hard Ball Systems and the Lorentz Gas

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 101))

Abstract

We discuss rigorous results and open problems on the decay of correlations for dynamical systems characterized by elastic collisions: hard balls, Lorentz gases, Sinai billiards and related models. Recently developed techniques for general dynamical systems with some hyperbolic behavior are discussed. These techniques give exponential decay of correlations for many classes of billiards and open the door to further investigations.

N. Chernov is partially supported by NSF grant DMS-9732728.

L. S. Young is partially supported by NSF grant DMS-9803150.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967).

    Google Scholar 

  2. R. Adler and B. Weiss, Entropy a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. USA 57 (1967), 1573–1576.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Benedicks and L.-S. Young, Markov extensions and decay or correlations for certain Hénon maps, to appear in Asterisque, 2000.

    Google Scholar 

  4. J.-P. Bouchaud and P. Le Doussal, Numerical study of a d-dimensional periodic Lorentz gas with universal properties, J. Statist. Phys. 41 (1985), 225–248.

    Article  MathSciNet  Google Scholar 

  5. R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1970), 725–747.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–459.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math. 470, Springer-Verlag, Berlin, 1975.

    MATH  Google Scholar 

  8. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Inventiones math. 29 (1975), 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Bruin, S. Luzzatto and S. van Strien, Decay or correlations in one-dimensional dynamics, preprint.

    Google Scholar 

  10. L. A. Bunimovich and Ya. G. Sinai, Markov partitions for dispersed billiards, Commun. Math. Phys. 73 (1980) 247–280.

    Article  MathSciNet  Google Scholar 

  11. L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers, Commun. Math. Phys. 78 (1981) 479–497.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markov partitions for two-dimensional billiards, Russ. Math. Surv. 45 (1990), 105–152.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Russ. Math. Surv. 46 (1991), 47–106.

    Article  MathSciNet  Google Scholar 

  14. L. A. Bunimovich, Existence of transport coefficients, a survey in this volume.

    Google Scholar 

  15. G. Casati, G. Comparin and I. Guarneri, Decay of correlations in certain hyperbolic systems, Phys. Rev. A 26 (1982), 717–719.

    Article  Google Scholar 

  16. N. I. Chernov, Ergodic and statistical properties of piecewise linear hyperbolic automorphisms of the 2-torus, J. Statist. Phys. 69 (1992), 111–134.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, Steady-state electrical conduction in the periodic Lorentz gas, Commun. Math. Phys. 154 (1993), 569–601.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, Derivation of Ohm’s law in a deterministic mechanical model, Phys. Rev. Lett. 70 (1993), 2209–2212.

    Article  Google Scholar 

  19. N. I. Chernov, Statistical properties of the periodic Lorentz gas. Multidimensional case, J. Stat. Phys. 74 (1994), 11–53.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. I. Chernov Limit theorems and Markov approximations for chaotic dynamical systems, Prob. Th. Rel. Fields 101 (1995), 321–362.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. I. Chernov Markov approximations and decay of correlations for Anosov flows, Ann. Math. 147 (1998), 269–324.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. I. Chernov, Statistical properties of piecewise smooth hyperbolic systems in high dimensions, Discr. Cont. Dynam. Syst. 5 (1999), 425–448.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. I. Chernov, Decay of correlations and dispersing billiards, J. Stat. Phys. 94 (1999), 513–556.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. I. Chernov and C. P. Dettmann, The existence of Burnett coefficients in the periodic Lorentz gas, Physica A 279 (2000), 37–44.

    Article  Google Scholar 

  25. N. L Chernov, Sinai billiards under small external forces, submitted. The manuscript is available at www.math.uab.edu/chernov/pubs.html

    Google Scholar 

  26. J. D. Crawford, J. R. Cary, Decay of correlations in a chaotic measure-preserving transformation, Physica D 6 (1983), 223–232.

    Article  Google Scholar 

  27. M. Denker, W. Philipp, Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Th. Dynam. Syst. 4, (1984), 541–552.

    MathSciNet  MATH  Google Scholar 

  28. M. Denker, The central limit theorem for dynamical systems, Dyn. Syst. Ergod. Th. Banach Center Publ., 23, PWN-Polish Sci. Publ., Warsaw, 1989.

    Google Scholar 

  29. R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Th. Prob. Appl. 13 (1968), 197–224.

    Article  Google Scholar 

  30. R. L. Dobrushin, Gibbsian random fields for lattice systems with pairwise interaction, Funct. Anal. Appl. 2 (1968), 292–301.

    Article  MATH  Google Scholar 

  31. R. L. Dobrushin, The problem of uniqueness of a Gibbsian random field and the problem of phase transitions, Funct. Anal. Appl. 2 (1968), 302–312.

    Article  MATH  Google Scholar 

  32. D. Dolgopyat, On decay of correlations in Anosov flows, Ann. Math. 147 (1998), 357–390.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergod. Th. & Dynam. Syst. 18 (1998), 1097–1114.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.J. Erpenbeck and W.W. Wood, Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results, Phys. Rev. A 26 (1982), 1648–1675.

    Article  Google Scholar 

  35. P. Ferrero and B. Schmitt, Ruelle-Perron-Frobenius theorems and projective metrics, Colloque Math. Soc. J. Bolyai Random Fields, Estergom, Hungary (1979).

    Google Scholar 

  36. B. Friedman, R. F. Martin, Decay of the velocity autocorrelation function for the periodic Lorentz gas, Phys. Lett. A 105 (1984), 23–26.

    Article  Google Scholar 

  37. B. Friedman, R. F. Martin, Behavior of the velocity autocorrelation function for the periodic Lorentz gas, Physica D 30 (1988), 219–227.

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Gallavotti and E.D.G. Cohen, Dynamical ensembles in stationary states, J. Stat. Phys. 80 (1995), 931–970.

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Garrido and G. Gallavotti, Billiards correlation function, J. Statist. Phys. 76 (1994), 549–585.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Hadamard, Les surfaces à courbures opposées et leur lignes géodèsiques, J. Math. Pures Appl. 4 (1898), 27–73.

    MATH  Google Scholar 

  41. J. G. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241–246.

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), 119–140.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus, II, Math. Annalen 117 (1940), 590–608.

    Article  MathSciNet  Google Scholar 

  44. A. del Junco, J. Rosenblatt, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185–197.

    Article  MathSciNet  MATH  Google Scholar 

  45. N. S. Krylov, Works on the foundation of statistical physics, Princeton U. Press, Princeton, N.J., 1979.

    Google Scholar 

  46. O. E. Lanford and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Commun. Math. Phys. 13 (1969), 194–215.

    Article  MathSciNet  Google Scholar 

  47. C. Liverani, Decay of correlations, Annals of Math. 142 (1995), 239–301.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Machta, B. Reinhold, Decay of correlations in the regular Lorentz gas, J. Statist. Phys. 42 (1986), 949–959.

    Article  MathSciNet  Google Scholar 

  49. D. S. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math., 14 (1973), 184–198.

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoir. Amer. Math. Soc. 161 (1975).

    Google Scholar 

  51. M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985), 413–426.

    Article  MathSciNet  MATH  Google Scholar 

  52. Y. Pomeau and P. Resibois, Time dependent correlation function and mode-mode coupling theories, Phys. Rep. 19 (1975), 63–139.

    Article  Google Scholar 

  53. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math. 15 (1973) 92–114.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973), 181–197.

    MathSciNet  Google Scholar 

  55. M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math. 17 (1974), 380–391.

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Rehacek, On the ergodicity of dispersing billiards, Random Comput. Dynam. 3 (1995), 35–55.

    MathSciNet  MATH  Google Scholar 

  57. D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Commun. Math. Phys. 9 (1968), 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  58. D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976), 619–654.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978.

    MATH  Google Scholar 

  60. D. Ruelle, Flots qui ne mélangent pas exponentiellement, C. R. Acad. Sci. Paris 296 (1983), 191–193.

    MathSciNet  MATH  Google Scholar 

  61. N. Simányi, Hard ball systems are completely hyperbolic, Ann. of Math. 149 (1999), 35–96.

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Simányi, Hard balls systems and semidispersive billiards, a survey in this volume.

    Google Scholar 

  63. N. Simányi, Ergodicity of hard spheres in a box, Ergod. Th. Dyn. Syst. 19 (1999), 741–766.

    Article  MATH  Google Scholar 

  64. Ya. G. Sinai, The central timit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Math. Dokl. 1 (1960), 983–987.

    MathSciNet  MATH  Google Scholar 

  65. Ya. G. Sinai, Geodesic flows on compact surfaces of negative curvature, Soviet Math. Dokl. 2 (1961), 106–109.

    MathSciNet  MATH  Google Scholar 

  66. Ya. G. Sinai, Markov partitions and C-diffeomorphisms, Funct. Anal. Its Appl. 2 (1968), 61–82.

    Article  MATH  Google Scholar 

  67. Ya.G. Sinai, Construction of Markov partitions, Funct. Anal. Its Appl. 2 (1968), 245–253.

    Article  MATH  Google Scholar 

  68. Ya.G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv. 25 (1970), 137–189.

    Article  MathSciNet  MATH  Google Scholar 

  69. Ya.G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27 (1972), 21–69.

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  71. D. Volny, On limit theorems and category for dynamical systems, Yakohama Math. J. 38 (1990), 29–35.

    MathSciNet  MATH  Google Scholar 

  72. Q. Wang and L.-S. Young, Analysis of a class of strange attractors, preprint.

    Google Scholar 

  73. M. P. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Syst. 5 (1985), 145–161.

    MathSciNet  MATH  Google Scholar 

  74. L.-S. Young, Statistical properties of dynamical systems with some hyper-bolicity, Annals of Math. 147 (1998), 585–650.

    Article  MATH  Google Scholar 

  75. L.-S. Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chernov, N., Young, L.S. (2000). Decay of Correlations for Lorentz Gases and Hard Balls. In: Szász, D. (eds) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04062-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04062-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08711-0

  • Online ISBN: 978-3-662-04062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics