Skip to main content

On the Sequences of Collisions Among Hard Spheres in Infinite Space

  • Chapter
Hard Ball Systems and the Lorentz Gas

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 101))

Abstract

Ludwig Boltzmann’s kinetic equation for dilute gases involves knowledge of the dynamics of an isolated pair of particles. Attempts to generalize this equation to higher densities necessarily involve knowledge of the collective dynamics of groups of more than two particles. These attempts therefore give rise to the following mathematical question: For the particularly simple case of hard spheres, where only two-particle collisions occur, what is the nature of the sequences of those collisions that can occur in infinite space? In particular, is there a maximum number of collisions among a given number n of hard spheres?

A survey is given of the main results obtained so far:

  1. 1)

    The maximum number of collisions among n hard spheres is bounded.

  2. 2)

    The maximum number of collisions among three identical hard spheres is four, except in the one-dimensional case. The possible sequences are given and the proof outlined.

  3. 3)

    The maximum number of collisions among any three hard spheres constrained to move in one dimension is given in terms of their masses. The collision sequences and the ultimate velocities of the particles are explicitly given in terms of their initial velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Dorfman and H. van Beijeren, “The Kinetic Theory of Gases”, in: Statistical Mechanics, Part B, B. J. Berne, ed., Plenum (New York) 65–179 (1977).

    Chapter  Google Scholar 

  2. E. G. D. Cohen, “Fifty Years of Kinetic Theory”, Physica A194, 229–257 (1993);

    Article  MathSciNet  Google Scholar 

  3. E. G. D. Cohen “Twenty-five Years of Non-equilibrium Statistical Mechanics”, in: Lecture Notes in Physics445, Springer, 21–50 (1995).

    Google Scholar 

  4. G. E. Uhlenbeck and G. W. Ford, “The Theory of Linear Graphs With Applications to the Theory of the Virial Development of the Properties of Gases”, in: Studies in Statistical Mechanics I Part B, J. de Boer and G. E. Uhlenbeck, eds., North Holland, 119–211 (1962).

    Google Scholar 

  5. Ref. 2; E. G. D. Cohen, “Kinetic Theory: Understanding Nature Through Collisions”, Am. J. Phys.61, 524–533 (1993).

    Article  MATH  Google Scholar 

  6. D. Ruelle, “Correlation functions of classical gases”, Ann. Phys.25, 109–120(1963);

    Article  MathSciNet  Google Scholar 

  7. J. L. Lebowitz and O. Penrose, “Convergence of Virial Expansions”, J. Math. Phys. 5, 841–847 (1964);

    Article  MathSciNet  Google Scholar 

  8. D. Ruelle, in Statistical Mechanics: Rigorous Results, Addison-Wesley, Reading, Mass, pp. 85,99 (1989).

    Google Scholar 

  9. E. G. D. Cohen, “On the Kinetic Theory of Dense Gases”, J. Math. Phys.4, 183–189 (1963).

    Article  MATH  Google Scholar 

  10. J. V. Sengers, M. H. Ernst and D. T. Gillespie, “Three-Particle Collision Integrals for a Gas of Hard Spheres”, J. Chem. Phys.56, 5583–5601 (1972);

    Article  Google Scholar 

  11. J. V. Sengers, D. T. Gillespie and J. J. Perez-Esander, “Three-Particle Collision Effects in the Transport Properties of a Gas of Hard Spheres”, Physica A90, 365–409 (1978).

    Article  Google Scholar 

  12. J. E. Mayer, “Theory of Ionic Solutions”, J. Chem. Phys.18, 1426–1436 (1950).

    Article  Google Scholar 

  13. E. G. D. Cohen, “The Kinetic Theory of Dense Gases”, in: “Fundamental Problems in Statistical Mechanics II”, E. G. D. Cohen, ed., North Holland, Amsterdam 228–275, (1968);

    Google Scholar 

  14. J. R. Dorfman, “Kinetic and Hydrodynamic Theory of Time Correlation Functions”, ibid. III, 227–330 (1975).

    Google Scholar 

  15. E. G. D. Cohen, “Bogolubov and Kinetic Theory: The Bogolubov Equations”, M3AS: Mathematical Models and Methods in Applied Sciences,7(7), 909–933 (1997).

    MATH  Google Scholar 

  16. L. N. Vaserstein, “On Systems of Particles with Finite-Range and/or Repulsive Interactions”, Commun. Math. Phys.69, 31–56 (1979). (For the one-dimensional case this had previously been proven in G. A. Gal’perin, “Elastic Collisions of Particles on a Line”, Russian Math. Surveys33:1, 199–200 (1978) and

    Article  Google Scholar 

  17. Ya. G. Sinai, “Billiard Trajectories in a Polyhedral Angle”, Russian Math. Surveys 33:1, 219–220 (1978).)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. A. Gal’perin, “On Systems of Locally Interacting and Repelling Particles Moving in Space”, Trans. Moscow Math. Soc. Issue 1, 159–215 (1983).

    Google Scholar 

  19. W. Thurston and G. Sandri, “Classical Hard Sphere Three-Body Problem”, Bull. Am. Phys. Soc.9, 386 (1964).

    Google Scholar 

  20. E. G. D. Cohen, “On the Statistical Mechanics of Moderately Dense Gases”, in: Lectures in Theoretical Physics Vol. 8A (Univ. of Colo. Press, Boulder, Colo.), 167–178 (1966).

    Google Scholar 

  21. G. Sandri and A. H. Kritz, “Approach to the N-Body Problem with Hard-Sphere Interaction Applied to the Collision Domains of Three Bodies”, Phys. Rev.150, 92–100 (1966).

    Article  Google Scholar 

  22. T. J. Murphy and E. G. D. Cohen, “Maximum Number of Collisions among Identical Hard Spheres”, J. Stat. Phys.71, 1063–1080 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Sandri, R. D. Sullivan, and P. Norem, “Collisions of Three Hard Spheres”, Phys. Rev. Lett.13, 743–745 (1964).

    Article  MATH  Google Scholar 

  24. W. R. Hoegy and J. V. Sengers, “Three-Particle Collisions in a Gas of Hard Spheres”, Phys. Rev. A2, 2461–2471 (1970);

    Article  Google Scholar 

  25. J. V. Sengers, D. T. Gillespie and W. R. Hoegy, “Dynamical Theorems for Three Hard Spheres”, Phys. Lett. A32, 387–388 (1970).

    Article  Google Scholar 

  26. T. J. Murphy, “Dynamics of Hard Rods in One Dimension”, J. Stat. Phys.74, 889–901 (1994).

    Article  Google Scholar 

  27. Cf. e.g. T. J. Rivlin, The Chebyshev Polynomials, (Wiley-Interscience, New York) (1974).

    MATH  Google Scholar 

  28. A. N. Zemljakov, “Arithmetic and Geometry of Collisions”, Kvant No. 4, p. 14 (1978).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, T.J., Cohen, E.G.D. (2000). On the Sequences of Collisions Among Hard Spheres in Infinite Space. In: Szász, D. (eds) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04062-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04062-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08711-0

  • Online ISBN: 978-3-662-04062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics