Skip to main content

A Geometric Approach to Semi-Dispersing Billiards

  • Chapter
Hard Ball Systems and the Lorentz Gas

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 101))

Abstract

This section contains a survey of a few results obtained by a particular realization of V. Arnold’s old idea that hard ball models of statistical physics can be “considered as the limit case of geodesic flows on negatively curved manifolds (the curvature being concentrated on the collisions hypersurface)”. The approach is based on representing billiard trajectories as geodesics in appropriate spaces. These spaces are not even topological manifolds: they are lengths spaces of curvature bounded above in the sense of A. D. Alexandrov. Nevertheless, this method allows to transforms a certain type of problems about billiards into purely geometric statements; and a problem looking difficult in its billiard clothing sometimes turns into a relatively easy statement (by the modern standards of metric geometry). In particular, this approach helped to solve an old problem of whether the number of collisions in a hard ball model is bounded from above by a quantity depending only on the system (and thus uniform for all initial conditions).

We would like to express our sincere gratitude to M.Brin, N.Chernov, G.Galperin, M.Gromov, A.Katok and Ya.Pesin for very helpful comments and fruitful discussions.

partially supported by a Sloan Foundation Fellowship and NSF grant DMS-98-05175

partially supported by NSF DMS-99-71587

partially supported by NSF DMS-98-03092

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Alexandrov. A theorem on triangles in a metric space and some applications of it. Tr. Mat. Inst. Steklova38, 5–23, 1951. (Russian).

    Google Scholar 

  2. A.D. Alexandrov and Yu, D. Burago Quasigeodesics. Proc. Steklov. Inst. Math.76, 58–76, 1965.

    Google Scholar 

  3. A.D. Alexandrov and V.V. Strel’tsov. The isoperimetric problem and estimates of a length of a curve on a surface. Proc. Steklov. Inst. Math.76, 81–99, 1965.

    Google Scholar 

  4. A.D. Alexandrov and V.A. Zalgaller. Intrinsic geometry of surfaces. Transi. Math. Monographs 15, Am. Math. Soc., 1967.

    Google Scholar 

  5. V. Arnold. Lecture given at the meeting in the Fields institute dedicated to his 60th birthday.

    Google Scholar 

  6. W. Ballmann. Lectures on spaces of nonpositive curvature. With an appendix by Misha Brin. DMV Seminar, 25. Birkhauser Verlag, Basel, 1995.

    Book  MATH  Google Scholar 

  7. M. Berry. Quantizing a classically ergodic system: Sinai’s billiard and the KKR method. Ann. Physics 131, no. 1, 163–216, 1981.

    Article  MathSciNet  Google Scholar 

  8. P. Bleher. Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J. of Stat. Physics 66, no. 1/2, 315–373, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Bowen. Topological entropy for noncompact sets. Trans. Amer. Math. Soc.184, 125–136, 1973.

    Article  MathSciNet  Google Scholar 

  10. L.A. Bunimovich. Variational principle for periodic trajectories of hyperbolic billiards. Chaos 5, no. 2, 349–355, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  11. L.A. Bunimovich. A central limit theorem for scattering billiards. (Russian) Mat. Sb. (N.S.) 94, no. 136, 49–73, 1974.

    MathSciNet  Google Scholar 

  12. L.A. Bunimovich, Ya.G. Sinai. The fundamental theorem of the theory of scattering billiards. (Russian) Mat. Sb. (N.S.)90, no. 132, 415–431, 1973.

    Google Scholar 

  13. L.A. Bunimovich, Ya.G. Sinai. Markov partitions for dispersed billiards. Comm. Math. Phys.78, no. 2, 247–280, 1980/81.

    Article  MathSciNet  MATH  Google Scholar 

  14. L.A. Bunimovich, Ya.G. Sinai. Statistical properties of Lorentz gas with periodic configuration of scatterers. Comm. Math. Phys.78, no. 4, 479–497, 1980/81.

    Article  MathSciNet  Google Scholar 

  15. L.A. Bunimovich, Ya.G. Sinai, N.I. Chernov. Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys46, no. 4, 47–106, 1991.

    Article  MathSciNet  Google Scholar 

  16. L.A. Bunimovich, Ya.G. Sinai, N.I. Chernov. Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45, no. 3, 105–152, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  17. L.A. Bunimovich, C. Liverani, A. Pellegrinotti, Y. Suhov. Ergodic systems of n balls in a billiard table. Comm. Math. Phys. 146, no. 2, 357–396, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Burago, S. Ferleger, A. Kononenko. Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. of Math. (2) 147 (1998), no. 3, 695–708.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Burago, S. Ferleger, A. Kononenko. Topological entropy of semi-dispersing billiards. Ergodic Theory and Dynamical Systems, 18 (1998), no. 4, 791–805.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Burago, S. Ferleger, A. Kononenko. Unfoldings and global bounds on the number of collisions for generalized semi-dispersing billiards. Asian J. Math2 (1998), no. 1, 141–152.

    MathSciNet  MATH  Google Scholar 

  21. D. Burago, S. Ferleger, A. Kononenko. Geometric Approach to Semi-Dispersing Billiards. Ergodic Theory and Dynamical Systems,17, no. 2, 1–17, 1998..

    MathSciNet  Google Scholar 

  22. D. Burago, S. Ferleger, B. Kleiner and A. Kononenko. Gluing copies of a 3-dimensional polyhedron to obtain a closed nonpositively curved (pseudo)manifold. Proc. Amer. Math. Soc, to appear.

    Google Scholar 

  23. D. Burago Hard Balls Gas and Alexandrov Spaces of Curvature Bounded Above Proceedings of the ICM-98, vol 2. Documenta Mathematica, 1998.

    Google Scholar 

  24. N.I. Chernov, R. Makarian. Entropy of non-uniformly hyperbolic plane billiards. Bol. Soc. Brasil. Mat. (N.S.) 23, no. 1–2, 121–135, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. N.I. Chernov. Topological entropy and periodic points of two-dimensional hyperbolic billiards. Funct. Anal. Appl. 25, No.1, 39–45, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  26. N.I. Chernov. New proof of Sinai’s formula for the entropy of hyperbolic billiard systems. Application to Lorentz gases and Bunimovich stadiums. Funct. Anal. Appl. 25, No.1, 204–219, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  27. N.I. Chernov. Construction of transverse fiberings in multidimensional semidispersed billiards. Funct. Anal. Appl. 16, no. 4, 270–280, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  28. N.I. Chernov. Entropy, Lyapunov exponents and mean free path for billiards. J. of Stat. Physics 88, no. 1/2, 1–29, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  29. N.I. Chernov. Statistical properties of the periodic Lorentz gas. Multidimensional case. J. of Stat. Physics 74, no. 1/2, 11–53, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Colin de Verdiere. Hyperbolic geometry in two dimensions and trace formulas. Chaos et physique quantique (Les Houches, 1989), 305–330, North-Holland, Amsterdam, 1991.

    Google Scholar 

  31. V. Donnay. Elliptic islands in generalized Sinai billiards. Ergodic Theory Dynam. Systems 16, no. 5, 975–1010, 1996.

    MathSciNet  MATH  Google Scholar 

  32. V. Donnay, C. Liverani. Potentials on the two-torus for which the Hamiltonian flow is ergodic. Comm. Math. Phys. 135, no. 2, 267–302, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Doron, U. Smilansky. Periodic orbits and semiclassical quantization of dispersing billiards. Nonlinearity 5, no. 5, 1055–1084, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Efimov. A Livshits-type theorem for scattering billiards. Theoret. and Math. Phys. 98, no. 2, 122–131, 1994.

    Article  MathSciNet  Google Scholar 

  35. T. Harayama, A. Shudo. Periodic orbits and semiclassical quantization of dispersing billiards. J. Phys. A 25, no. 17, 4595–4611, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  36. G.A. Gal’perin. Systems with locally interacting and repelling particles moving in space. (Russian) Tr. MMO 43, 142–196, 1981.

    MathSciNet  MATH  Google Scholar 

  37. G. A. Gal’perin. Elastic collisions of particles on a line. (Russian) Uspehi Mat. Nauk 33 no. 1(199), 211–212, 1978.

    MathSciNet  MATH  Google Scholar 

  38. G. Gallavotti, D. Ornstein. Billiards and Bernoulli schemes. Comm. Math. Phys. 38, no. 2, 83–101, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Gromov. “Hyperbolic groups.” in Essays in group theory, S.M. Gersten (ed.). M.S.R.I. Publ., Vol.8, 75–263, Springer 1987.

    Chapter  Google Scholar 

  40. M. Gromov. Structures metriques pour les varietes riemanniennes. Edited by J. Lafontaine and P. Pansu. Textes Mathematiques, 1. CEDIC, Paris, 1981.

    Google Scholar 

  41. E. Gutkin, N. Haydn. Topological entropy of generalized polygon exchanges. Bull, of AMS 32, No. 1, 50–56, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Hass, P. Scott. Bounded 3-manifold admits negatively curved metric with concave boundary. J. Diff. Geom. 40, no. 3, 449–459, 1994.

    MathSciNet  MATH  Google Scholar 

  43. M. Ikawa. Deacy of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier 38, 113–146, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Illner. Finiteness of the number of collisions in a hard sphere particle system in all space. Transport Theory Statist. Phys. 19, No.6, 573–579, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Katok. The grows rate of the number of singular and periodic orbits for a polygonal billiard. Comm. Math. Phys. 111, 151–160, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Katok, J.M. Strelcyn. Smooth maps with singularities: invariant manifolds, entropy and billiards. Lect. Notes in Math., vol. 1222, Springer-Verlag, 1987.

    Google Scholar 

  47. V. Kozlov, D. Treshchev. “Billiards. A genetic introduction to the dynamics of systems with impacts.” Translations of Mathematical Monographs, 89. American Mathematical Society, Providence, RI, 1991.

    MATH  Google Scholar 

  48. N.S. Krillov. Works on the foundation of the statistical physics. AS USSR, Moscow, 1950. English translation: Princeton Series in Physics. Princeton University Press, Princeton, N.J., 1979.

    Google Scholar 

  49. A. Kramli, N. Simanyi, D. Szasz. The K-property of three billiard balls. Ann. of Math. (2) 133, no. 1, 37–72, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Kramli, N. Simanyi, D. Szasz. A “transversal” fundamental theorem for semi-dispersing billiards. Comm. Math. Phys., 129, no. 3, 535–560, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  51. Y-E. Levy. A note on Sinai and Bunimovich’s Markov partition for billiards. J. Statist. Phys. 45, no. 1–2, 63–68, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Malcev. On isomorphic matrix representations of infinite groups. (Russian) Rec. Math. [Mat. Sbornik] N.S. 8, no. 50, 405–422, 1940.

    MathSciNet  MATH  Google Scholar 

  53. T. Morita. The symbolic representation of billiards without boundary condition. Trans. Amer. Math. Soc. 325, 819–828, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  54. J.W. Morgan, H. Bass (ed.) “The Smith conjecture. Papers presented at the symposium held at Columbia University, New York, 1979.” Pure and Applied Mathematics, 112. Academic Press, Inc., Orlando, Fla., 1984.

    Google Scholar 

  55. T.J. Murphy, E.G.D. Cohen Maximum Number of Collisions among Identical Hard Spheres, J. Stat. Phys. 71, 1063–1080, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  56. J.-P. Otal. Thurston’s hyperbolization of Haken manifolds, preprint.

    Google Scholar 

  57. Ya.B. Pesin, B.S. Pitskel. Topological pressure and variational principle for noncompact sets. Funct. Anal. Appl. 18, No.4, 307–318, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  58. Ya.B. Pesin, Ya.G. Sinai. Hyperbolicity and stochasticity of dynamical systems. Mathematical physics reviews, Vol. 2, pp. 53–115, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 2, Harwood Academic, Chur, 1981.

    Google Scholar 

  59. J. Rehacek. On the ergodicity of dispersing billiards. Random Comput. Dynam.3, no. 1–2, 35–55.

    Google Scholar 

  60. Yu.G. Reshetnyak (ed.). Geometry 4, non-regular Riemannian geometry. Encyclopedia of Mathematical Sciences, Vol.70, 1993.

    Google Scholar 

  61. P. Sarnak. Some applications of modular forms. Cambridge tracts in mathematics, Vol. 99, 1990.

    Book  MATH  Google Scholar 

  62. N. Simanyi. The if-property of N billiard balls. I. Invent. Math. 108, no. 3, 521–548, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  63. N. Simanyi. The if-property of N billiard balls. II. Invent. Math. 110, no. 1, 151–172, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  64. N. Simanyi, D. Szasz. Lecture given at Penn State University, 1997.

    Google Scholar 

  65. N. Simanyi, M. Wojtkowski. Two-particle billiard system with arbitrary mass ratio. Ergodic Theory Dynamical Systems 9, no. 1, 165–171, 1989.

    MathSciNet  MATH  Google Scholar 

  66. Ya.G. Sinai, N. Chernov. Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Russian Math. Surveys 42, 181–207, 1987.

    Article  MathSciNet  Google Scholar 

  67. Ya.G. Sinai, N.I. Chernov. Entropy of a gas of hard spheres with respect to the group of space-time shifts. (Russian) Trudy Sem. Petrovsk. No. 8, 218–238, 1982. English translation in “Dynamical Systems”, ed. Ya. Sinai, Adv. Series in Nonlinear Dynamics, Vol.1, 373–389.

    Google Scholar 

  68. Ya.G. Sinai. Entropy per particle for the dynamical system of hard spheres. Harvard Univ. Preprint, 1978.

    Google Scholar 

  69. Ya.G. Sinai. Billiard trajectories in polyhedral angles. Uspehi Mat. Nauk 33, No.1, 229–230, 1978.

    MathSciNet  MATH  Google Scholar 

  70. Ya.G. Sinai (ed.). Dynamical Systems 2. Encyclopedia of Mathematical Sciences, Vol.2, 1989.

    Google Scholar 

  71. Ya.G. Sinai. On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Soviet Math. Dokl. 4, 1818–1822, 1963.

    MathSciNet  Google Scholar 

  72. Ya.G. Sinai. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russian Math. Surveys 25, 137–189, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  73. Ya.G. Sinai. Development of Krylov’s ideas. A supplementary article in “Works on the foundations of statistical physics,” by N.S. Krylov, Princeton Series in Physics. Princeton University Press, Princeton, N.J., 1979.

    Google Scholar 

  74. Ya.G. Sinai. Hyperbolic billiards. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 249–260, Math. Soc. Japan, Tokyo, 1991.

    Google Scholar 

  75. Ya.G. Sinai. Ergodic properties of a Lorentz gas. Functional Anal. Appl. 13, 192–202, 1979.

    MathSciNet  Google Scholar 

  76. A. Semenovich, L. Vaserstein. Uniform estimates on the number of collisions in particles’ systems, preprint.

    Google Scholar 

  77. L. Stojanov. An estimate from above of the number of periodic orbits for semi-dispersed billiards. Comm. Math. Phys. 124, No.2, 217–227, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  78. L. Stojanov. Exponential instability for a class of dispesing billiards, preprint

    Google Scholar 

  79. S. Tabachnikov. Billiards. Panor. Syntheses, no. 1, 1995. 1991.

    MathSciNet  Google Scholar 

  80. S. Troubetzkoy. Stochastic stability of scattering billiards. Theoret. and Math. Phys. 86, no. 2, 151–158, 1991.

    Article  MathSciNet  Google Scholar 

  81. W. Thurston, G. Sandri. Classical hard sphere 3-body problem. Bull. Amer. Phys. Soc.9, 386, 1964.

    Google Scholar 

  82. W. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6, no. 3, 357–381, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  83. L.N. Vaserstein. On systems of particles with finite range and/or repulsive interactions. Comm. Math. Phys. 69, 31–56, 1979.

    Article  MathSciNet  Google Scholar 

  84. A. Vetier. Sinai billiard in potential field (construction of stable and unstable fibers). Limit theorems in probability and statistics, Vol. I, II (Veszprem, 1982), 1079–1146, Colloq. Math. Soc. Janos Bolyai, 36, North-Holland, Amsterdam-New York, 1984.

    Google Scholar 

  85. M. Wojtkowski. Measure theoretic entropy of the system of hard spheres. Ergodic Theory Dynamical Systems, 8, no. 1, 133–153, 1988.

    MathSciNet  MATH  Google Scholar 

  86. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Annals of Math., to appear.

    Google Scholar 

  87. A. Zemlyakov, A. Katok. Topological transitivity of billiards in polygons. Math. Notes 18, 760–764, 1975.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burago, D., Ferleger, S., Kononenko, A. (2000). A Geometric Approach to Semi-Dispersing Billiards. In: Szász, D. (eds) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04062-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04062-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08711-0

  • Online ISBN: 978-3-662-04062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics