Skip to main content

Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries?

  • Chapter
Hard Ball Systems and the Lorentz Gas

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 101))

Abstract

An overview of the history of Ludwig Boltzmann’s more than one hundred year old ergodic hypothesis is given. The existing main results, the majority of which is connected with the theory of billiards, are surveyed, and some perspectives of the theory and interesting and realistic problems are also mentioned.

Lecture presented on International Symposium in Honor of Boltzmann’s 150th Birthday, February 23–26 1994, Vienna.

Reproduced from Studia Scientiarum Mathematicarum Hungarorum 31 (1996), 266–322, with kind permission of Akadémia Kiadó, Budapest, Hungary.

Research supported by the Hungarian National Foundation for Scientific Research, grant No. 1902

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. (1976): Time Evolution of Infinitely Many Hard Spheres. Commun. Math. Phys. 49 217–232

    Article  Google Scholar 

  2. Anosov, D.S., Sinai, Ya. G. (1967): Some Smooth Dynamical Systems. Uspehi Mat. Nauk 22 107–172

    MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I. (1963): Proof of Kolmogorov’s Theorem on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian (in Russian). Usp. Mat. Nauk. 18 9–36

    Google Scholar 

  4. Birkhoff, G.D. (1931): Proof of the Ergodic Theorem. Proc. Nat. Acad. Sci. USA 17 656–660

    Article  Google Scholar 

  5. Birkhoff, G.D., Koopman, B.O. (1932): Recent Contributions to Ergodic Theory. Proc. Nat. Acad. Sci. USA 18 279–282

    Article  Google Scholar 

  6. Boldrighini, C., Pellegrinotti, A., Presutti, E., Sinai, Ya.G., Soloveychik, M.R. (1985): Ergodic Properties of a Semi-Infinite One-Dimensional System of Statistical Mechanics. Commun. Math. Phys. 101 363–382

    Article  Google Scholar 

  7. Boltzmann, L. (1871): Einige allgemenine Sätze über das Wärmegleichgewicht. Wien. Ber. 63 679–711

    MATH  Google Scholar 

  8. Boltzmann, L. (1872): Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Wien. Ber. 66 275–370

    MATH  Google Scholar 

  9. Boltzmann, L. (1884): Über die Eigenschaften monozyklischer und amderer damit vervandter Systeme. Creeles Journal 98 68–94

    Google Scholar 

  10. Bunimovich, L., Liverani, C., Pellegrinotti, A., Sukhov, Yu. (1992): Special Systems of Hard Balls that Are Ergodic. Commun. Math. Phys. 146 357–396

    Article  MathSciNet  MATH  Google Scholar 

  11. Bunimovich, L.A., Sinai, Ya.G. (1973): On a Fundamental Theorem in the Theory of Dispersing Billiards. Mat. Sbornik 90 415–431

    Google Scholar 

  12. Chernov, N.I. (1991): A New Proof of Sinai’s Formula for Entropy of Hyperbolic Billiards. Its Application to Lorentz Gas and Stadium. Funkcionalny Analiz i Pril. 25/3 50–69

    MathSciNet  Google Scholar 

  13. Chernov, N.I. (1994): Limit Theorems and Markov Approximations for Chaotic Dynamical Systems. Manuscript 1–45

    Google Scholar 

  14. Dobrushin, R.L. (1956): On Poisson’s Law for Distribution of Particles in Space.. Ukrain. Mat. Z. 8 127–134 (in Russian)

    MathSciNet  MATH  Google Scholar 

  15. Donnay, V., Liverani, C. (1991): Potentials on the Two-torus for which the Hamiltonian Flow is Ergodic. Commun. Math. Phys. 135 267–302

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdős, L., Tuyen, Dao.Q.: Ergodic Properties of the Multidimensional Rayleigh Gas with a Semipermeable Barrier. J. Stat. Phys.

    Google Scholar 

  17. Fermi, E., Pasta, J., Ulam, S. (1955): Studies of Nonlinear Problems. Los Alamos Report LA-1940

    Book  Google Scholar 

  18. Flamm, D. (1989): Boltzmann’s Statistical Approach to Irreversibility. UWThPh 1989–4 1–11

    MATH  Google Scholar 

  19. J Fritz, J., Funaki, T., Lebowitz, J.L. (1994): Stationary States of Random Hamiltonian Systems. Probab. Theor. Rel. Fields 99 211–236

    Article  MathSciNet  MATH  Google Scholar 

  20. Froeschlé, C. (1978): Phys. Rev. A 18 277

    Article  Google Scholar 

  21. Froeschlé, C., Scheidecker, J.-P. (1975): Phys. Rev. A 12 2137

    Article  Google Scholar 

  22. Galgani, L. (1985): Ordered and Chaotic Motions in Hamiltonian Systems and the Problem of Energy Partition. Chaos in Astrophysics, ed. J.R. Buchler 245–257

    Google Scholar 

  23. Galgani, L., Giorgili, A., Martinoli, A., Vanzini, S. (1993): On the Problem of Energy Equipartition for Large Systems of the Fermi-Pasta-Ulam Type: Analytical and Numerical estimates, manuscript 1–26

    Google Scholar 

  24. Gallavotti, G. (1994): Ergodicity, Ensembles, Irreversibility in Boltzmann and Beyond. Preprint ESI 1–10

    Google Scholar 

  25. Goldstein, S., Lebowitz, J.L., Ravishankar, K. (1982): Ergodic Properties of a System in Contact with a Heat Bath. Commun. Math. Phys. 85 419–427

    Article  MathSciNet  MATH  Google Scholar 

  26. Hedlund, G.A. (1939): The Dynamics of Geodesic Flows. Bull. Amer. Math. Soc. 45 241

    Article  MathSciNet  MATH  Google Scholar 

  27. Hénon, M. (1983): Numerical Exploration of Hamiltonian Systems. Les Houches, Comportement Chaotique des Systemes Déterministes, 1981 XXXVI 55–171

    Google Scholar 

  28. Herman, M.R. (1991): Stabilité Topologique des Systemes Dynamiques Conservatifs. Manuscript pp. 15

    Google Scholar 

  29. Hilbert, D. (1900): Mathematische Probleme. Göttinger Nachrichten 253–297

    Google Scholar 

  30. Hopf, E. (1939): Statistik der geodetischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 261–304

    MathSciNet  Google Scholar 

  31. Knauf, A. (1987): Ergodic and Topological Properties of Coulombic Periodic Potentials. Commun. Math. Phys. 100 85–112

    MathSciNet  Google Scholar 

  32. Kolmogorov, A.N. (1954): On the Conservation of Conditionally Periodic Motions under Small Perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR 98 527–530

    MathSciNet  MATH  Google Scholar 

  33. Koopman, B.O. (1931): Hamiltonian Systems and Linear Transformations in Hilbert Space. Proc. Nat. Acad. Sci. USA 17 315–318

    Article  Google Scholar 

  34. Krámli, A., Simányi, N., Szász, D. (1989): Ergodic Properties of Semi-Dispersing Billiards I. Two Cylindric Scatterers in the 3-D Torus. Nonlinearity 2 311–326

    Article  MathSciNet  MATH  Google Scholar 

  35. Krámli, A., Simányi, N., Szász, D. (1990): A “Transversal” Fundamental Theorem for Semi-Dispersing Billiards. Commun. Math. Phys. 129 535–560

    Article  MATH  Google Scholar 

  36. Krámli, A., Simányi, N., Szász, D. (1991): The K-Property of Three Billiard Balls. Annals of Mathematics 133 37–72

    Article  MathSciNet  MATH  Google Scholar 

  37. Krámli, A., Simányi, N., Szász, D. (1992): The K-Property of Four Billiard Balls. Commun. Math. Phys. 144 107–148

    Article  MATH  Google Scholar 

  38. Krámli, A., Szász, D. (1983): Convergence to Equilibrium of the Lorentz Gas.. Colloquia Math. Soc. János Bolyai 35 757–766

    Google Scholar 

  39. Krámli, A., Szász, D. (1985): The Problem of Recurrence for Lorentz Processes. Commun, in Math. Physics 98 539–552

    Article  MATH  Google Scholar 

  40. Krylov, N.S. (1977): The Processes of Relaxation of Statistical Systems and the Criterion of Mechanical Instability. Thesis (1942); in Development of Krylov’s Ideas. Princeton University Press 193–238

    Google Scholar 

  41. Kubo, I. (1976): Perturbed Billiard Systems. I.. Nagoya Math. Journal 61 1–57

    MathSciNet  MATH  Google Scholar 

  42. Kubo, L, Murata, H. (1981): Perturbed Billiard Systems. II., Nagoya Math. Journal 81 1–25

    MathSciNet  Google Scholar 

  43. Lanford, O.E. (1975): Time Evolution of Large Classical Systems. Dynamical Systems, ed. J. Moser, Springer Lecture Notes in Physics 38 1–97

    Google Scholar 

  44. Mackey, G.W. (1990): The Legacy of John von Neumann (Hempstead, NY, 1988). Proc. Sympos. Pure Math. AMS Providence, RI, 50 25–38

    Book  Google Scholar 

  45. Liverani, C, Wojtkowski, M.: Ergodicity in Hamiltonian Systems. Dynamics Reported (to appear)

    Google Scholar 

  46. Markus, L., Meyer, K.R. (1978): Generic Hamiltonian Dynamical Systems are neither Integrable nor Ergodic. Memoirs of the Amer. Math. Soc. 144 1–52

    Google Scholar 

  47. Moser, J. (1962): On Invariant Curves of Area-Preserving Mapping of an Annulus. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl IIa, 1 1–20

    Google Scholar 

  48. Neumann, J. von (1929): Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Zeitschrift für Physik 57 30–70

    Article  MATH  Google Scholar 

  49. Olla, S., Varadhan, S.R.S., Yau, H.T. (1993): Hydrodynamic Limit for a Hamiltonian System with Weak Noise. Commun. Math. Phys. 155 523–560

    Article  MathSciNet  MATH  Google Scholar 

  50. Simányi, N. (1992): The K-property of N billiard balls I. Invent. Math. 108 521–548;

    Article  MathSciNet  MATH  Google Scholar 

  51. Simányi, N. (1992): IL ibidem 110 151–172 (1992)

    MATH  Google Scholar 

  52. Simányi, N., Szász, D. (1994): The K-property of 4-D Billiards with Non-Orthogonal Cylindric Scatterers. J. Stat. Phys. 76 587–604

    Article  MATH  Google Scholar 

  53. Simányi, N., Szász, D. (1994): The K-property of Hamiltonian Systems with Restricted Hard Ball Interaction, (in preparation)

    Google Scholar 

  54. Simon, B. (1984): Fifteen Problems in Mathematical Physics. Perspectives in Mahtematics, Anniversary of Oberwolfach, Birkhauser, Boston 423–454

    Google Scholar 

  55. Sinai, Ya.G. (1963): On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Dokl. Akad. Nauk SSSR 153 1261–1264

    Google Scholar 

  56. Sinai, Ya.G. (1970): Dynamical Systems with Elastic Reflections. Usp. Mat. Nauk 25 141–192

    MathSciNet  MATH  Google Scholar 

  57. Sinai, Ya.G., Chernov, N.I. (1985): Ergodic Properties of Some Systems of 2-D Discs and 3-D Spheres. manuscript

    Google Scholar 

  58. Sinai, Ya.G. (1979): Ergodic Properties of the Lorentz Gas. Funkcionalny Analiz i Pril.13/3 46–59

    MathSciNet  MATH  Google Scholar 

  59. Sinai, Ya.G., Chernov, N.I. (1987): Ergodic Properties of Some Systems of 2-D Discs and 3-D Spheres. Usp. Mat. Nauk 42 153–174

    MathSciNet  Google Scholar 

  60. Szász, D. (1993): Ergodicity of Classical Hard Balls. Physica A 194 86–92

    Article  MathSciNet  MATH  Google Scholar 

  61. Szász, D. (1994): The K-property of ‘Orthogonal’ Cylindric Billiards. Commun. Math. Phys.160 581–597

    Article  MATH  Google Scholar 

  62. Volkovissky, K.L., Sinai, Ya.G. (1971): Ergodic Properties of an Ideal Gas with an Infinite Number of Degrees of Freedom (in Russian). Funkcinalny Anal. i Prim.5 19–21

    Article  Google Scholar 

  63. Wojtkowski, M. (1990): A System of One-Dimensional Balls with Gravity. Commun. Math. Phys.126 425–432

    Article  Google Scholar 

  64. Wojtkowski, M. (1990): The System of One-Dimensional Balls in an External Field. Commun. Math. Phys.127 425–432

    Article  MathSciNet  MATH  Google Scholar 

  65. Wojtkowski, M. (1990): Linearly Stable Orbits in 3 Dimensional Billiards. Commun. Math. Phys.129 319–327

    Article  MathSciNet  MATH  Google Scholar 

  66. Yoccoz, J.-Ch. (1992): Travaux de M. Herman sur les Tores Invariants. (Séminaire Bourbaki, Vol 1991/92, 44) Astérisque 206 Exp. No 754 311–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szász, D. (2000). Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries?. In: Szász, D. (eds) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04062-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04062-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08711-0

  • Online ISBN: 978-3-662-04062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics