Skip to main content

Simulation of Billiards and of Hard Body Fluids

  • Chapter

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 101))

Abstract

Recent computer simulations have contributed significantly to our understanding of the Lyapunov instability of hard particle systems in equilibrium and in nonequilibrium steady states. We discuss a very general method for the computation of the full Lyapunov spectra and apply it to billiards and to many-body hard disk and hard sphere systems. The velocity correlation function of billiard flows is also discussed. For hard disk and hard sphere systems the perturbed states associated with the smallest Lyapunov exponents (in absolute magnitude) are shown to reveal collective dynamic modes. We study the properties of these modes and provide examples for hard disk systems in two dimensions. It is suggested that there is a connection with the dynamic modes familiar from fluctuating hydrodynamics. The largest Lyapunov exponent, however, is associated with localized perturbations in the fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ch. Dellago, H.A. Posch, and W.G. Hoover, Phys. Rev. E53, 1485 (1996).

    Google Scholar 

  2. Ch. Dellago and H.A. Posch, Phys. Rev. E52, 2401 (1995).

    Article  MathSciNet  Google Scholar 

  3. Ch. Dellago and H.A. Posch, Phys. Rev. Lett., 78, 211 (1997).

    Article  Google Scholar 

  4. Ch. Dellago and H.A. Posch, Physica D112, 241 (1998).

    MathSciNet  Google Scholar 

  5. Ch. Dellago, L. Glatz and H.A. Posch, Phys. Rev. E52, 4817 (1995).

    MathSciNet  Google Scholar 

  6. H. van Beijeren, J.R. Dorfman, E.G.D. Cohen, H.A. Posch, and Ch. Dellago, Phys. Rev. Lett.77, 1974 (1996).

    Article  Google Scholar 

  7. H. van Beijeren, J.R. Dorfman, H.A. Posch, and Ch. Dellago, Phys. Rev. E56, 5272 (1997).

    Google Scholar 

  8. Ch. Dellago and H.A. Posch, Physica A,240, 68 (1997).

    Google Scholar 

  9. Ch. Dellago and H.A. Posch, Phys. Rev. E55, R9 (1997).

    Google Scholar 

  10. G. Benettin, L. Galgani, A. Giorgilli, and J.M. Strelcyn, C. R. Acad. Sci., Ser. A286, 431 (1978).

    MathSciNet  MATH  Google Scholar 

  11. G. Benettin, L. Galgani, A. Giorgilli, and J.M. Strelcyn, Meccanica 15, 9 (1980).

    Article  MATH  Google Scholar 

  12. I. Shimada and T. Nagashima, Progr. Theor. Phys.61, 1605 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London (1990).

    MATH  Google Scholar 

  14. V. I. Oseledec, Trans. Moscow Math. Soc.19, 197 (1968).

    MathSciNet  Google Scholar 

  15. J.-P. Eckmann and D. Ruelle, Rev. of Modern Phys.57, 617 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica D16, 285 (1985).

    MathSciNet  Google Scholar 

  17. Ya. G. Sinai, Russ. Math. Surv.25, 137 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. A. Bunimovich and Ya. G. Sinai, Math. USSR Sb.19, 407 (1973).

    Article  Google Scholar 

  19. L. A. Bunimovich, Funct. Anal. Appl.8, 73 (1974).

    Article  Google Scholar 

  20. L. A. Bunimovich, Comm. Math. Phys.65, 295 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. L. Garrido and G. Gallavotti, J. Statist. Phys.76, 549 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Artuso, Physica D, (1999).

    Google Scholar 

  23. G. Benettin, Physica 13 D, 211 (1984).

    MathSciNet  Google Scholar 

  24. G. Locke-Scobie, H. A. Posch, and D. Szasz, in preparation.

    Google Scholar 

  25. K. Pearson, The Life, Letters and Labours of Francis Galton, Volume III. Cambridge University Press, 1930.

    MATH  Google Scholar 

  26. H.A. Posch, Ch. Dellago, W.G. Hoover, and O. Kum, “Microscopic Time-Reversibility and Macroscopic Irreversibility — Still a Paradox?”, in Pioneering Ideas for the Physical and Chemical Sciences: Josef Loschmidt’s Contributions and Modern Developments in Structural Organic Chemistry, Atomistics, and Statistical Mechanics W. Fleischhacker and T. Schönfeld, eds., Plenum, New York, 1997.

    Google Scholar 

  27. B. Friedman and R.F. Martin, Phys. Lett. 105 A, 23 (1984).

    Google Scholar 

  28. P. Dahlqvist and R. Artuso, Phys. Lett. A219, 212 (1996).

    Article  MathSciNet  Google Scholar 

  29. Ch. Dellago, and H.A. Posch, Physica A,230, 364 (1996).

    Article  Google Scholar 

  30. B. J. Alder, W. G. Hoover, and T.E. Wainwright, Phys. Rev. Lett.11, 241, (1963).

    Article  Google Scholar 

  31. L. A. Bunimovich and Ya. G. Sinai, Comm. Math. Phys.78, 247 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  32. L. A. Bunimovich and Ya. G. Sinai, Comm. Math. Phys.78, 479 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  33. P. M. Bleher, J. Stat. Phys.66, 315 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Ruelle, J. Stat. Phys.44, 281 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Artuso, G. Casati, and I. Guarneri, Phys. Rev. E51, R3807 (1995);

    MathSciNet  Google Scholar 

  36. R. Artuso, G. Casati, and I. Guarneri, J. Stat. Phys.83, 145 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Moran, W. G. Hoover, J. Stat. Phys.48, 709 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  38. W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  39. W. G. Hoover, Phys. Lett. A204, 133 (1995).

    Article  MathSciNet  Google Scholar 

  40. R. Illner, and H. Neunzert, Transport Theory and Statistical Physics 16(1), 89 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  41. B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Lett.59, 10 (1987).

    Article  MathSciNet  Google Scholar 

  42. W.G. Hoover, H.A. Posch, B.L. Holian, M.J. Gillan, M. Mareschal and C. Massobrio, Molecular Simulations 1, 79 (1987).

    Article  Google Scholar 

  43. E. Ott, Chaos in dynamical systems, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  44. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Phys. Rev. Lett.70, 2209 (1993).

    Article  Google Scholar 

  45. W. N. Vance, Phys. Rev. Lett.69, 1356 (1992).

    Article  Google Scholar 

  46. H.A. Posch, and W.G. Hoover, Phys. Rev. A38, 473 (1988).

    Google Scholar 

  47. J. R. Dorfman and Henk van Beijeren, Physica A240, 12 (1997).

    Google Scholar 

  48. D. J. Evans, E. G. D. Cohen, and G. P Morriss, Phys. Rev. A42, 5990 (1990).

    Article  Google Scholar 

  49. C. P. Dettmann, G. P. Morriss, and L. Rondoni, Phys. Rev. E52, R5746 (1995).

    Google Scholar 

  50. A. Latz, H. van Beijeren, and J. R. Dorfman, Phys. Rev. Lett.78, 207 (1997).

    Article  Google Scholar 

  51. S. Sarman, D. J. Evans, and G. P. Morriss, Phys. Rev. A45, 2233 (1992).

    Article  Google Scholar 

  52. M. P. Wojtkowski and C. Liverani, Comm. Math. Phys.194, 47 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Ruelle, J. Stat. Phys.95, 393 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  54. Ch. Dellago and H.A. Posch, Phys. Rev. E, in preparation (2000).

    Google Scholar 

  55. Ya. B. Pesin, Sov. Math. Dokl.17, 196 (1976).

    MATH  Google Scholar 

  56. P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  57. J. R. Dorfman, A. Latz, and H. van Beijeren, preprint.

    Google Scholar 

  58. R. van Zon, H. van Beijeren, and Ch. Dellago, Phys. Rev. Lett.80, 2035 (1998).

    Article  Google Scholar 

  59. Ya. G. Sinai, Int. J. of Bifurcation and Chaos Appl. Sci. Eng.6, 1137 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  60. Wm. G. Hoover, K. Boercker, and H. A. Posch, Phys. Rev. E57, 3911 (1998).

    Google Scholar 

  61. Lj. Milanovic, H.A. Posch, and Wm. G. Hoover, Chaos,8, 455 (1998).

    Article  MATH  Google Scholar 

  62. Lj. Milanovic, H.A. Posch, and Wm. G. Hoover, Molec. Phys.,95, 281 (1998).

    Article  Google Scholar 

  63. D. J. Searles, D. J. Evans, and D. J. Isbister, Physica 240A, 96 (1997).

    Google Scholar 

  64. R. Hirschl, Lj. Milanovic, and H. A. Posch, unpublished.

    Google Scholar 

  65. J.-P. Eckmann and O. Gat, J. Stat. Phys.98, 775 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  66. H.A.P. is grateful to Prof. Ya. G. Sinai for a discussion on this point.

    Google Scholar 

  67. D. J. Evans and G. Morriss, Phys. Rev. A30, 1528 (1984).

    Article  Google Scholar 

  68. H.A. Posch and W.G. Hoover, “Nonequilibrium molecular dynamics of classical fluids”, in Molecular Liquids: new perspectives in Physics and Chemistry, edited by José J.C. Teixeira-Dias, NATO-ASI Series C: Mathematical & Physical Sciences, Kluwer Academic Publishers, Dordrecht, p. 527, 1992.

    Google Scholar 

  69. Wm. G. Hoover, Time Reversibility, Computer Simulation and Chaos, World Scientific, Singapore, 1999.

    MATH  Google Scholar 

  70. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.

    Google Scholar 

  71. G. A. Bird, Phys. Fluids,6,1518 (1963).

    Article  Google Scholar 

  72. B. J. Berne and R. Pecora, Dynamic Light Scattering, Wiley, New York, 1976.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posch, H.A., Hirschl, R. (2000). Simulation of Billiards and of Hard Body Fluids. In: Szász, D. (eds) Hard Ball Systems and the Lorentz Gas. Encyclopaedia of Mathematical Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04062-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04062-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08711-0

  • Online ISBN: 978-3-662-04062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics