Missense and Splice Site Mutations in Tau Associated with FTDP-17 Multiple Pathogenic Mechanisms

  • M. Hutton
  • S. Lovestone
  • P. Heutink
  • S. Pickering-Brown
  • S.-H. Yen
Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)


The recent identification of mutations in the gene encoding the microtubule associated protein Tau in the inherited dementia FTDP-17 has demonstrated that Tau dysfunction can lead to neurodegeneration. At least nine missense mutations and one deletion mutation (ΔK280) have been identified in exons 9 through 13 that encode the microtubule binding domain of Tau. In addition, six different mutations have been found in the 5′ splice site of exon 10. The FTDP-17 missense and splice site mutations have been demonstrated to have multiple effects on the biology and function of Tau. It is likely that they result in the varied set of clinical and neuropathological features observed in the FTDP-17 tauopathies.

The majority of missense mutations have been demonstrated in vitro to partially inhibit the direct binding of Tau to microtubules and Tau-induced polymerization of tubulin. In addition, altered Tau self-interaction leading to increased filament formation has been shown in vitro for the P301L, V337M and R406W mutations, suggesting that at least two properties of Tau may be disturbed by the conformation change induced by the majority of FTDP-17 tau missense mutations.

Mutations in the 5′ splice site of exon 10 (-2, +3, +12, +13, +14, +16) all destabilize a stem-loop structures that regulates alternative splicing of this exon. This presumably results in increased binding of splicing factors that are crucial to the early stages of spliceosome formation (most likely the U1 snRNP). As a result, increased levels of exon 10+ RNA and thus Tau isoforms with 4 microtubule binding repeats are generated. The presence of mutations that affect the alternative splicing of exon 10 demonstrates that the ratio of isoforms with 4 and 3 microtubule binding repeats is crucial to Tau function. The N279K mutation is unusual in that it is a missense mutation that does not affect the interaction of Tau with microtubules but increases splicing of exon 10, likely through the strengthening of a splice enhancer element.

In general, the common link between the missense and splice site tau mutations is that each is likely to increase the level of unbound Tau in the cell, either all six isoforms or 4 repeat isoforms specifically. This increase in unbound Tau may lead to the formation of polymerized Tau filaments and insoluble inclusions, resulting in neurodegeneration. Alternatively, disrupted microtubule function may underlie the pathogenic mechanism in FTDP-17.


Splice Site Progressive Supranuclear Palsy Splice Site Mutation Microtubule Binding Microtubule Binding Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochem. 31:10626–10633CrossRefGoogle Scholar
  2. Baker M, Kwok JB, Kucera S, Crook R, Farrer M, Houlden H, Isaacs A, Lincoln S, Onstead L, Hardy J, Wittenberg L, Dodd P, Webb S, Hayward N, Tannenberg T, Andreadis A, Hallupp M, Schofied P, Dark F, Hutton M (1997) Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21–22. Ann Neurol 42:794–798PubMedCrossRefGoogle Scholar
  3. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Hardy J, Lynch T, Bigio E, Hutton M (1999) Association of an extended haplotype in the tau gene with Progressive Supranuclear Palsy. Human Mol Genet 8: 711–715CrossRefGoogle Scholar
  4. Church DM, Stotler CJ, Rutter JL, Murrell JR, Trofarrer JA, Buckler AJ (1994) Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet 6:98–105PubMedCrossRefGoogle Scholar
  5. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K, Andreadis A, D’Souza I, Lee VMY, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998) Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 95:13103–13107PubMedCrossRefGoogle Scholar
  6. Conrad C, Andreadis A, Trojanowski JQ, Dickson DW, Kang D, Chen X, Wiederholt W, Hansen L., Masliah E, Thal LJ, Katzman R, Xia Y, Saitoh T (1997) Genetic evidence of the involvement of x in Progressive Supranuclear Palsy. Ann Neurol 41:277–281PubMedCrossRefGoogle Scholar
  7. Dayanadan R, Van Slegtenhorst M, Lewis J, Brion J-P, Anderton BH, Hutton M, Lovestone S (1999) Mutations in tau reduce its microtubule-binding properties in intact living cells. FEBS Letts 446:228–232CrossRefGoogle Scholar
  8. Delacourte A, Buee L (1997) Normal and pathological Tau proteins as factors for microtubule assembly. Int Rev Cytol 171:167–224PubMedCrossRefGoogle Scholar
  9. Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y (1998) Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their distribution and phosphorylation. Ann Neurol 43:193–204PubMedCrossRefGoogle Scholar
  10. Domenjoud L, Gallinaro H, Kister L, Meyer S, Jacob M (1991) Identification of a specific exon sequence that is a major determinant in the selection between a natural and a cryptic 5′ splice site. Mol Cell Biol 11:4581–4590PubMedGoogle Scholar
  11. Dickson D (1997) Neurodegenerative diseases with cytoskeletal pathology: a biochemical classification. Ann Neurol 42:541–543PubMedCrossRefGoogle Scholar
  12. Dickson DW, Feany MB, Yen S-H, Marriace LA, Davies P (1996) Cytoskeletal pathology in non-Alzheimer degenerative dementia: new lesions in Diffuse Lewy body disease, Pick’s disease, and corticobasal degeneration. J Neural Transm 47:31–46CrossRefGoogle Scholar
  13. Dumanchin C, Camuzat A, Campion D, Verpillat P, Hannequin D, Dubois B, Saugier-Veber P, Martin C, Penet C, Charbonnier F, Agid Y, Frebourg T, Brice A (1998) Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Human Mol Genet 7:1825–1829CrossRefGoogle Scholar
  14. Flament S, Delacourte A, Verny M, Haw J J, Javoy-Agid (1991) Abnormal Tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81: 591–596PubMedCrossRefGoogle Scholar
  15. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S, conference participants (1997) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a consensus statement. Ann Neurol 41:706–715PubMedCrossRefGoogle Scholar
  16. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989a) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399PubMedGoogle Scholar
  17. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989b) Multiple isoforms of human microtubule-associated protein tau: sequence and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526PubMedCrossRefGoogle Scholar
  18. Goedert M, Crowther RA, Garner CC (1991) Molecular characterization of microtubule-associated proteins Tau and MAP2. Trends Neurosci 14:193–199PubMedCrossRefGoogle Scholar
  19. Grover A, Houlden H, Baker M, Adamson J, Pickering-Brown S, Hutton M (1999) 5′ Splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem 274:15134–15143PubMedCrossRefGoogle Scholar
  20. Hardy J, Duff K, Gwinn-Hardy K, Perez-Tur J, Hutton M (1998) Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to Tau. Nature Neurosci 1:355–358PubMedCrossRefGoogle Scholar
  21. Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437:207–210PubMedCrossRefGoogle Scholar
  22. Heutink P, Stevens M, Rizzu P, Bakker E, Kros JM, Tibben A, Niermeijer MF, van Duijn CM, Oostra BA, van Swieten JC (1997) Hereditary fronto-temporal dementia is linked to chromosome 17q21–22. A genetic and clinico-pathological study of three Dutch families. Ann Neurol 41:150–159PubMedCrossRefGoogle Scholar
  23. Hong H, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM-Y (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917PubMedCrossRefGoogle Scholar
  24. Houlden H, Baker M, Adamson J, Grover A, Waring S, Dickson D, Lynch T, Boeve B, Petersen RC, Pickering-Brown S, Owen F, Neary D, Craufurd D, Snowden J, Mann D, Hutton M (1999) Prevalence of tau mutations in three series of non-Alzheimer’s degenerative dementia. Ann Neurol, in pressGoogle Scholar
  25. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Ooostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705PubMedCrossRefGoogle Scholar
  26. Iijima M, Tabira T, Poorkaj P, Schellenberg GD, Trojanowski JQ, Lee VM, Schmidt ML, Takahashi K, Nabika T, Matsumoto T, Yamashita Y, Yoshioka S, Ishino H (1999) A distinct familial presenile dementia with a novel missense mutation in the tau gene. Neuroreport 10:497–501PubMedCrossRefGoogle Scholar
  27. Kidd M (1964) Alzheimer’s disease-an electron microscopical study. Brain 67:307–320CrossRefGoogle Scholar
  28. Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequences. Neuron 2:1389–1397PubMedCrossRefGoogle Scholar
  29. Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of Tau protein. Neuron 2:1615–1624PubMedCrossRefGoogle Scholar
  30. Liu WK, Yen SH (1996) The state of phosphorylation of normal adult brain tau, fetal tau, and tau from Alzheimer paired helical filaments at amino acid residue Ser262. J Neurochem 66:1131–1139PubMedCrossRefGoogle Scholar
  31. LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI (1995) Functional implications for the microtubule-associated protein Tau: localization in oligodendrocytes. Proc Natl Acad Sci USA 92:10369–10373PubMedCrossRefGoogle Scholar
  32. Lovestone S, Hartley CL, Pearce J, Anderton BH (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73:1145–1157PubMedCrossRefGoogle Scholar
  33. Lovestone S, Reynolds CH (1997) Tau phosphorylation: a critical stage in neurodevelopment and neurodegenerative process. Neuroscience 78:309–324PubMedCrossRefGoogle Scholar
  34. Mann DMA, South PW, Snowden JS, Neary D (1993) Dementia of frontal lobe type: neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiat 56:605–614PubMedCrossRefGoogle Scholar
  35. Matsuo ES, Shin RW, Billingsley ML (1994) Biopsy-derived adult human brain tau is posphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13:989–1002PubMedCrossRefGoogle Scholar
  36. Müller R, Heimich M, Heck S, Blohm D, Richter-Landsberg C (1997) Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes. Cell Tissue Res 288:239–249PubMedCrossRefGoogle Scholar
  37. Nacharaju P, Lewis J, Easson C, Yen S, Hackett J, Hutton M, Yen SH (1999) Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett 447:195–199PubMedCrossRefGoogle Scholar
  38. Neve RL, Harris P, Kosik K, Kurnit DM, Donlon A (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein. 2. Mol Brain Res 1:271–280CrossRefGoogle Scholar
  39. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of τ into filaments in the presence of heparin: The minimal sequence required for τ-τ interaction. J Neurochem 67:1183–1190PubMedCrossRefGoogle Scholar
  40. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825PubMedCrossRefGoogle Scholar
  41. Reed LA, Grabowski TJ, Schmidt ML, Morris JC, Goate A, Solodkin A, Van HG, Schelper RL, Talbot CJ, Wragg MA, Trojanowski JQ (1997) Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 42:564–572PubMedCrossRefGoogle Scholar
  42. Rizzu P, Van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA, Goedeit M, van Duijn CM, Heutink P (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Human Genet 64:414–421CrossRefGoogle Scholar
  43. Sima AA, Defendini R, Keohane C, D’Amato C, Foster NL, Parchi P, Gambetti P, Lynch T, Wilhelmsen KC (1996) The neuropathology of chromosome 17-linked dementia. Ann Neurol 39:734–743PubMedCrossRefGoogle Scholar
  44. Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci USA 94:4113–4118PubMedCrossRefGoogle Scholar
  45. Spillantini MG, Bird TD, Ghetti B (1998a) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8:387–402PubMedCrossRefGoogle Scholar
  46. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998b) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95:7737–7741PubMedCrossRefGoogle Scholar
  47. Spillantini MG, Crowther RA, Kamphorst W, Heutink P, van Swieten JC (1998c) Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. Am J Pathol 153:1359–1363PubMedCrossRefGoogle Scholar
  48. Weisshaar B, Matus A (1993) Microtubule-associated protein 2 and the organization of cellular microtubules. J Neurocytol 22:727–734PubMedCrossRefGoogle Scholar
  49. Wilhelmsen KC, Lynch T, Pavlou E, Nygaard TG (1994) Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21–22. Am J Human Genet 55:1159–1165Google Scholar
  50. Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubtule associated protein tau in vitro. J Cell Biol 118:573–584PubMedCrossRefGoogle Scholar
  51. Wilson DM, Binder LI (1997) Free fatty acids stimulate the polymerization of tau and amyloid β peptides: In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am J Pathol 150:2181–2195PubMedGoogle Scholar
  52. Yagishita S, Itoh Y, Nan W, Amano N (1981) Reappraisal of the fine structure Alzheimer’s neurofibrillary tangles. Acta Neuropathol (Berl) 54:239–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Hutton
  • S. Lovestone
  • P. Heutink
  • S. Pickering-Brown
  • S.-H. Yen

There are no affiliations available

Personalised recommendations