Bacterial Roles in the Precipitation of Carbonate Minerals

  • Sabine Castanier
  • Gaële Le Métayer-Levrel
  • Jean-Pierre Perthuisot


Bacterial carbonate formation includes autotrophic pathways that induce local CO2 depletion of the medium and heterotrophic pathways that can lead to active or passive precipitation. In active precipitation, solid carbonate is localised by ionic exchange through the cell membrane. In passive precipitation, processes such as ammonification, dissimilatory nitrate reduction, degradation of urea or uric acid, and sulphate reduction lead to carbonate and bicarbonate production and a pH increase, processes which induce solid carbonate precipitation. In heterotrophic bacterial communities, pathways of carbonate precipitation always appear to be responses to enrichment by organic matter, and the precise nutritional conditions play a major role in the relationships between bacteria and the developing crystals. Heterotrophic bacterial precipitation, evaluated by laboratory experiments, appears to be the most probable process in the formation of apparently abiotic limestones. Bacterial carbonate formation has applications for stonework preservation and restoration.


Calcium Carbonate Carbonate Precipitation Hydrogen Sulphide Calcium Carbonate Precipitation Nutritional Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen GP, Laurier D, Thouvenin J (1979) Etude sédimentologique du Delta de la Mahakam. Compagnie Française des Pétroles, Paris (Notes et Mémoires, vol 15 )Google Scholar
  2. Basson PW, Burchard JE, Hardy JT, Price ARG (1977) Biotopes of the Western Arabian Gulf. Marine life and environments of Saudi Arabia. ARAMCO, DhahranGoogle Scholar
  3. Berkeley C (1919) A study of marine bacteria. Straits of Georgia B.C. Proc Trans R Soc Can (Ottawa Sect) 5(13)15–43Google Scholar
  4. Callot G, Guyon A, Mousain D (1985) Inter-relations entre aiguilles de calcite et hyphes mycéliens. Agronomie 5: 209–216CrossRefGoogle Scholar
  5. Castanier S (1984) Etude de l’évolution quantitative et qualitative des populations bactérienne précipitant le carbonate dans différents cas artificiels de confinement réalisés à partir d’eau et de sédiment lagunaires méditerranéens. Thesis, Aix-Marseille II UniversityGoogle Scholar
  6. Castanier S (1987) Microbiogéologie: processus et modalités de la carbonatogenèse bactérienne. Thesis, Nantes University Castanier S, Maurin A, Perthuisot JP (1988) Les Cugnites: carbonates amorphes de Ca et Mg, précurseurs possibles de la dolomite. C R Acad Sci 306 II: 1231–1235Google Scholar
  7. Castanier S, Bernet-Rollande MC, Maurin A, Perthuisot JP (1993) Effects of microbial activity on the hydrochemistry and sedimentology of Lake Logipi, Kenya. Hydrobiologia 267: 99–112Google Scholar
  8. Castanier S, Le Métayer-Levrel G, Perthuisot JP (1997) La carbonatogenèse bactérienne. In: Causse F, Gasse F (eds) Hydrologie et géochimie isotopique. ORSTOM, Paris, pp 197–218Google Scholar
  9. Drew GH (191oa) The action of some denitrifying bacteria in tropical and temperate seas, and the bacterial precipitation of calcium carbonate in the sea. J Mar Biol Assoc IX:142–155Google Scholar
  10. Drew GH (191ob) On the precipitation of calcium carbonate in the sea by marine bacteria, and on the action of denitrifying bacteria in tropical and temperate seas. J Mar Biol Assoc IX:479–523Google Scholar
  11. Hemleben C, Anderson OR, Berthold WU, Spindler M (1986) Calcification and chamber formation in foraminifera–a brief review. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Systematics Assoc 30: 237–249Google Scholar
  12. Kellerman KF (1915) Relation of bacteria to deposition of calcium carbonate. Geol Soc Am Bull 26: 58Google Scholar
  13. Krumbein WE (1968) Geomicrobiology and geochemistry of lime crusts in Israel. In: Muller G, Friedman GM (eds) Recent developments in carbonate sedimentology in Central Europe. Springer, Berlin Heidelberg New York, pp 134–147Google Scholar
  14. Krumbein WE (1974) On the precipitation of aragonite on the surface of marine bacteria. Naturwissenschaften 61:167–177 Krumbein WE (1978) Algal mats and their lithification. In: Krumbein WE (ed) Environnemental biogeochemistry and geomicrobiology. The aquatic environnement, vol 1. Ann Arbor Science, Ann Arbor. pp 209–225Google Scholar
  15. Krumbein WE (1979) Calcification by bacteria and algae. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 47–68CrossRefGoogle Scholar
  16. Le Métayer-Levrel G (1996) Microbiogéologie du carbonate de calcium. Applications industrielles. Implications géologiques. Thesis, Nantes UniversityGoogle Scholar
  17. Le Métayer-Levrel G, Castanier C, Perthuisot JP (1997) From carbonatogenesis concepts to bacterial regeneration of limestones (microbial lifting) In: Microbial mediation in carbonate diagenesis. ASF Paris 26: 41–42Google Scholar
  18. Lipmann CB (1924) Further studies on marine bacteria with special reference to the Drew hypothesis on CaCO3 precipitation in the sea. Carnegie Inst, Washington, Publ 391 (26): 231–248.Google Scholar
  19. Margulis L, Sagan D (1986) Microcosmos. Four billion years of evolution from our microbial ancestors. Summit Books, Simon and Schuster, New YorkGoogle Scholar
  20. Marty D (1983) Cellulolyse et méthanogenèse dans les sédiments marins. Thesis, Aix-Marseille I UniversityGoogle Scholar
  21. Mollish H (1924) Über kalkbacterien und ausere kalkfallende pilze. Zentralbl Bakteriol II 65: 130–139Google Scholar
  22. Nadson GA (1928) Beitrag zur Kenntis der baketriogen Kalkabla gerungen. Arch Hydro’ 19: 154–164Google Scholar
  23. Orial G, Castanier S, Le Métayer G, Loubière JF (1993) The biomineralization: a new process to protect calcareous stone applied to historic monuments. Biodeterioration Cult Property 2:98–116Google Scholar
  24. Perthuisot JP, Castanier S, Le Métayer-Levrel G, Loubière JF (1997) From bacteria to crystals in karstic waters. The role of nutritional conditions. In: Microbial mediation in carbonate diagenesis ASF Paris 26: 55–56Google Scholar
  25. Pfennig N, Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, III. Williams and Wilkins, Baltimore, pp 1635–1709Google Scholar
  26. Pontoizeau P, Castanier S, Perthuisot JP (1996) Production bactérienne de struvite (MgNH4PO4, 6H20) au cours d’expériences visant à produire des carbonates hypermagnésiens. C R Acad Sci Paris 323 (IIa): 21–128Google Scholar
  27. Pontoizeau P, Castanier S, Perthuisot JP (1997) First bacterial production of magnesite MgCO3 in anaerobic strictly controlled conditions. In: Microbial mediation in carbonate diagenesis. ASF Paris 26: 57–58Google Scholar
  28. Verrecchia EP, Loisy C (1997) Carbonate precipitation by fungi in terrestrial sediments and soils. In: Microbial mediation in carbonate diagenesis. ASF Paris 26: 73–74Google Scholar
  29. de Vrind-de Jong EW, de Vrind JPM (1997) Algal deposition of carbonates and silica. In: Banfiel JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals: 267–307. Rev Mineral 35, Mineralogical Society of America, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sabine Castanier
    • 1
  • Gaële Le Métayer-Levrel
    • 1
  • Jean-Pierre Perthuisot
    • 1
  1. 1.Laboratoire de Biogéologie et MicrobiogéologieUniversité de NantesNantes Cedex 03France

Personalised recommendations