Microbes and Black Shales

  • Wolfgang Oschmann


Black shales, in general, form under low oxic to anoxic conditions, where microbes have evolved a variety of metabolic pathways. Modern oxygen-depleted environments typically contain anaerobic heterotrophic bacteria, aerobic chemolithoautotrophic bacteria (which partly live in mutualistic relationship with certain metazoa) and anaerobic photoautotrophic bacteria. These bacteria mainly degrade but partly also form organic matter. Their metabolic pathways and their preservational potential in the fossil record are discussed here. In many cases only metabolic waste products, e.g. pyrite, and certain bacterial derived biomarkers are preserved. Relicts of microbials mats occur as rare exceptions.


Black Shale Green Sulfur Bacterium Cold Seep Organic Sulfur Compound Purple Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison PA (1988) Konservat-Lagerstätten: cause and classification. Paleobiology 14: 331–344Google Scholar
  2. Arntz WE, Tarazone J, Gallardo VA, Flores LA, Salzwedel H (1991) Benthos communities in oxygen deficient shelf and upper slope areas of Peruvian and Chilenian Pacific coast, and changes caused by El Nino. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. Geol Soc Spec Publ 58: 131–154Google Scholar
  3. Beauchamp B, Savard M (1992) Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios 7: 434–450CrossRefGoogle Scholar
  4. Berger WH, Smetacek VS, Wefer G (eds) (1989) Productivity of the ocean; present and past. Wiley and Sons, ChichesterGoogle Scholar
  5. Bernasconi SM (1994) Geochemical and microbial controls on dolomite formation in anoxic environments. A case study from the middle Triassic (Ticino, Switzerland). Contributions to sedimentology 59. Schweizerbart, StuttgartGoogle Scholar
  6. Bryant C (ed) (1991) Metazoan life without oxygen. Chapman and Hall, LondonGoogle Scholar
  7. Canfield DE, Raiswell R (1991) Pyrite formation and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy, vol 9. Plenum Press, New York, pp 338–387Google Scholar
  8. Canfield DE, Raiswell R, Bottrell SH (1992) The reactivity of sedimentary iron minerals towards sulfide. Am J Sci 29: 2659–683Google Scholar
  9. Canfield DE, Jorgensen BB, Fossing H, Glud RN, Gundersen JK, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall, POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113: 27–40CrossRefGoogle Scholar
  10. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom MS (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325: 346–348CrossRefGoogle Scholar
  11. Coleman ML, Hedrick DB, Loveley DR, White DC, Pye K (1993) Reduction of Fe(III) in sediments by sulfate reducing bacteria. Nature 261: 436–438CrossRefGoogle Scholar
  12. De Leeuw JW, Frewin NL, Van Bergen PF, Sinninghe Damsté JS, Collinson ME (1995) Organic carbon as a palaeoenvironmental indicator in the marine realm. In: Bosence DWJ, Allison PA (eds) Marine palaeoenvironmental analysis from fossils. Geol Soc Spec Publ 83: 43–71Google Scholar
  13. De Zwaan A, (1991) Molluscs. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 186–217Google Scholar
  14. Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. AAPG Bull 64: 179–1209Google Scholar
  15. Dickman M, Artuz I (1978) Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea. Nature 275: 91–195CrossRefGoogle Scholar
  16. Fisher CR (1990) Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev Aquat Sci 2: 399–436Google Scholar
  17. Fisher IS, Hudson JD (1987) Pyrite formation in Jurassic shales of contrasting biofacies. In: Fleet A, Brooks J (eds) Marine petroleum source rocks. Geol Soc Spec Pub26:69–78Google Scholar
  18. Fossing H, Gallardo VA, Jorgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ram-sing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 37: 4713–715Google Scholar
  19. Gaillard C, Rio M, Rolin Y (1992): Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7: 451–465CrossRefGoogle Scholar
  20. Hartgers A, Sinninghe Damsté JS, Requejo AG, Allan J, Hayes JM, de Leeuw JW (1994) Evidence for only minor contributions from bacteria to sedimentary organic carbon. Nature 369: 224–226CrossRefGoogle Scholar
  21. Hashimoto J, Ohta S, Tanaka T, Hotta H, Matsuzawa S, Sakai H (1989) Deep-sea communities dominated by the giant clam Calyptogena soyoae along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeo Palaeoclimat Palaeoecol 71: 179–192Google Scholar
  22. Holmer M, Kristensen E (1996) Seasonality of sulfate reduction and pore water solutes in a marine fish farm sediment: The importance of temperature and sedimentary organic matter. Biogeochemistry 32: 15–39Google Scholar
  23. Hovland M (1992) Hydrocarbon seeps in northern marine waters–their occurrence and effects. Palaios 7: 376–382CrossRefGoogle Scholar
  24. Hudson JD (5982) Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. Sedimentology 29:639–667Google Scholar
  25. Kenig F, Sinninghe Damsté JS, Frewin NL, Hayes JM, de Leeuw JW (1995) Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II. High-resolution variations in abundances and C contents of free and sulfur-bound carbon skeletons in a single marl bed. Organic Geochem 23: 485–526Google Scholar
  26. Kauffman EG, Arthur MA, Howe B, Scholle PA (1996) Widespread venting of methane-rich fluids in the Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, USA. Geology 24: 799–802Google Scholar
  27. Lammers S, Suess E, Hovland M (1995) A large methane plume east of Bear Island ( Barents Sea); implications for the marine methane cycle. Geol Rundsch 84: 59–66Google Scholar
  28. Leventhal JS (1987) Carbon and sulfur relationship in Devonian shales from the Appalachian Basin as indicator of environment of deposition. Am J Sci 287: 33–49CrossRefGoogle Scholar
  29. Loveley DR, Roden EE, Phillips EJP, Woodward JC (1993) Encymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113: 41–53CrossRefGoogle Scholar
  30. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10: 373–389CrossRefGoogle Scholar
  31. Oschmann W (1988) Kimmeridge Clay sedimentation. A new cyclic model. Palaeogeo Palaeoclimat Palaeoecol 65: 217–251CrossRefGoogle Scholar
  32. Oschmann W (1990) Environmental cycles in the late Jurassic northwestern European epeiric basin: interaction with atmospheric and hydrospheric circulations. In: Aigner T, Dott RH (eds) Sedimentary geology, vol 69. Elsevier, Amsterdam, pp 217–251Google Scholar
  33. Oschmann W (1994) Adaptive pathways of benthic organisms in marine oxygen-controlled environments. N Jahrb Geol Paläont Abh 19: 1393–444Google Scholar
  34. Ourisson and Albrecht (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on earth? Acc Chem Res 25: 398–402CrossRefGoogle Scholar
  35. Ourisson and Rohmer (1992) Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids. Acc Chem Res 25: 403–408CrossRefGoogle Scholar
  36. Parkes RJ, Cragg BA, GetliffJM, Harvey SM, Fry JC, Lewis CA, Rowland St (1993) A quantitative study of microbial decomposition of biopolymers in recent sediments from Peru margin. Mar Geol 11: 355–66.Google Scholar
  37. Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semieuxinic sediments. Am J Sci 285: 711–724CrossRefGoogle Scholar
  38. Rajendran N, Matsuda O (1995) Fatty acid analysis to determine the seasonal variation in microbial biomass and its community structure of coastal sediments. J Fac Appl Biol Scien Hiroshima Univ 34: 21–32Google Scholar
  39. Ramsing NB, Fossing H, Ferdelman TG, Andersen F, Thamdrup B (1996) Distribution of bacterial populations in a stratified Fjord ( Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol 62: 1391–1404Google Scholar
  40. Richter G (1994) Bacteria and bacterial like structures from the oil-shale of Messel. Kaupia 4: 21–28Google Scholar
  41. Roux M, Rio M, Fatton E, Marien G, Pachiaudi C (1983) Taux de croissance des grands lamellibranches et reconstitution de l’activité hydrothermale à 21 °N (dorsale du Pacifique oriental) enregistrée parla coquille pendant 5 années. CR Acad Sci 29: 7495–500Google Scholar
  42. Savrda CE, Bottjer DJ, Seilacher A (1991) Redox-related benthic events. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelber, New York, pp 524–541Google Scholar
  43. Schein E, Roux M, Barbin V, Chiesi F, Renard M, Rio M (1991) Enregistrement des paramètres écologiques par la coquille des bivalves: approche pluridisciplinaire. Bull Soc Géol Fr 162: 687–698Google Scholar
  44. Schlegel HG (1993) General microbiology. Cambridge University Press, CambridgeGoogle Scholar
  45. Schmitz M, Ernst K (1994) Microspheroidal objects within the Eocene Messel Formation ( Messel Oilshale Pit/Germany ). Kaupia 4: 13–19Google Scholar
  46. Seilacher A (1990) Aberrations in bivalve evolution related to photo-and chemosymbiosis. Historical Biol 3: 289–311CrossRefGoogle Scholar
  47. Sinninghe Damsté JS, Kenig F, Koopmans MP, Köster J, Schouten S, Hayes JM, de Leeuw JW (1995) Evidence for gammacerane as an indicator of water column stratification. Geochim Cosmochim Acta 59: 1895–1900CrossRefGoogle Scholar
  48. Stach E, Mackowsky M-Th, Teichmüller M, Taylor GH, Chandra D, Teichmüller E (eds) (1982) Coal petrology. Borntraeger, StuttgartGoogle Scholar
  49. Sweerts JPRA, De Beer D, Nielsen LP, Verdouw H, Van den Heuvel JC, Cohen Y, Cappenberg TE (1990) Denitrification by sulfur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature (Lond) 344: 761–763CrossRefGoogle Scholar
  50. Tissot B, Welte DH (1978) Petroleum formation and occurrence. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  51. Van Dover CL (1995) Ecology of Mid-Atlantic ridge hydrothermal vents. In: Parson LM, Walker CL, Dixon DR (eds) Hydrothermal vents and processes. Geol Soc Spec Publ 87: 257–294Google Scholar
  52. Von Gemerden H (1993) Microbial mats; a joint venture. Parkes RJ, Westbroek P, de Leeuw JW (eds) Marine geology, vol 113. Elsevier, Amsterdam, pp 3–25Google Scholar
  53. Vetter RD, Powell MA, Somero GN (1991) Metazoan adaptations to hydrogen sulfide. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 109–128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Wolfgang Oschmann
    • 1
    • 2
  1. 1.Institut und Museum für Geologie und PaläontologieUniversität TübingenTübingenGermany
  2. 2.Geologisch-Paläontologisches InstitutUniversität FrankfurtFrankfurt am MainGermany

Personalised recommendations