Advertisement

Lattice Boltzmann Simulations of Complex Multiphase Flows

  • M. Krafczyk
  • P. Lehmann
  • O. Filippova
  • D. Hänel
  • U. Lantermann
Chapter

Summary

This paper presents simulation results for two classes of multiphase problems obtained using Lattice-Boltzmann approaches. The first part of the paper deals with gas-particle flow investigated by the Duisburg group. A detailed numerical investigation of particle deposition on a complex geometry is presented and values of collection efficiency of dynamically obstructed filters are obtained. The second part of the paper (contributed by the first two authors) investigates air-water flow in a porous medium and, to the authors knowledge, presents for the first time the qualitative reconstruction of a hysteresis curve for a realistic soil geometry obtained by X-ray tomography.

Keywords

Multiphase Flow Particle Deposition Collection Efficiency Spontaneous Imbibition Fluid Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.H. Qian, D. d’Humieres and P. Lallemand, Lattice BGK models for NavierStokes equation, Europh. Lett. 17(6), 479 (1992)MATHCrossRefGoogle Scholar
  2. 2.
    S. Chen, Z. Wang, X. Shan and G.D. Doolen, Lattice BGK models for NavierStokes equation, J. Stat. Phys. 68, 379 (1992)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    O. Filippova and D. Hänel, Grid refinement for lattice-BGK models, J. Comp. Phys., 147, 219 (1998)MATHCrossRefGoogle Scholar
  4. 4.
    C. Fan, B. Wamsley and J. W. Gentry, The effect of Stokes and Reynolds numbers on the collection efficiency of grid filters, J. of Col. Int. Sci., 65(1), 162 (1978)CrossRefGoogle Scholar
  5. 5.
    P. Lehmann, F. Stauffer, C. Hinz, O. Dury and H. Flühler, Effect of hysteresis on water flow in a sand column with a fluctuating capillary fringe, J. Cont. Hydr., 33, 81–100, (1998)CrossRefGoogle Scholar
  6. 6.
    R.H. Brooks and A.T. Corey, Properties of porous media affecting fluid flow, J. of the Irrigation and Drainage Division, ASCE, 92 (IR2), 61–88, (1966)Google Scholar
  7. 7.
    I. Fatt, The network model of porous media, I: Capillary Pressure Characteristics, Petroleum Transactions, AIME, 207, 144–159, (1956)Google Scholar
  8. 8.
    Y. Mualem and E.E. Miller, A hysteresis model based on an explicit domaindependence function, Soil Sci.Soc.Am.J., 43, 1067–1073, (1979)CrossRefGoogle Scholar
  9. 9.
    J.W. Hopmans, M. Cislerova and T. Vogel, X-ray tomography of soil properties, Tomography of soil-water-root processes, Special Publication 36, Soil Science Society of America, 17–28, (1994)Google Scholar
  10. 10.
    A.K. Gunstensen and D.H. Rothman, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, V 43 N 8, 4320–4327, (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Krafczyk
    • 1
  • P. Lehmann
    • 2
  • O. Filippova
    • 3
  • D. Hänel
    • 3
  • U. Lantermann
    • 3
  1. 1.LS BauinformatikTechnische Universität MünchenMunichGermany
  2. 2.Inst. of Terrestrial EcologyETH ZürichSwitzerland
  3. 3.Inst. of Combustion and GasdynamicsUniversity of DuisburgGermany

Personalised recommendations