Matrix Compression for the Radiation Heat Transfer in Exhaust Pipes

  • M. Bebendorf
  • S. Rjasanow


A mathematical model for the heat transfer in a system of exhaust pipes of an automobile is described. The forced convection of the exhaust gas, the heat conduction and the heat transfer due to radiation are coupled. An effective numerical solution of the boundary integral equation for the radiation heat transfer is presented. The analytical form of the matrix entries for the collocation method is derived. Adaptive cross approximation is used for the compression of the system matrix. Some numerical examples for the matrix compression are presented.


Boundary Element Method Boundary Integral Equation Radiation Heat Transfer Catalytic Converter Exhaust Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Nording. Neuartiges Konzept für Abgaskrümmer, Vorrohre und Katalysatoren. Motortechnische Zeitschrift, 52: 206–210, 1991. Google Scholar
  2. 2.
    W. Hackbusch. A sparse matrix arithmetic based on -H-matrices. I. Introduction to -H-matrices. Computing, 62(2): 89–108, 1999.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    W. Hackbusch and B. N. Khoromskij. A Sparse -1-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems. Technical report, Max-PlanckInstitut, Leipzig, 1999.Google Scholar
  4. 4.
    W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54(4): 463–491, 1989.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    S. Rjasanow. Effective Algorithms with Block Circulant Matrices. Linear Algebra Appl., 202: 55–69, 1994.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    S. Rjasanow. Heat Transfer in an Insulated Exhaust Pipe. Journal Eng. Math., 29: 33–49, 1995.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    S. Rjasanow. Optimal preconditioner for boundary element formulation of the Dirichlet problem in elasticity. Math. Methods in Appl. Sciences, 18: 603–613, 1995.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. Rjasanow. The Structure of the Boundary Element Matrix for the Threedimensional Dirichlet Problem in Elasticity. Num. Linear Algebra Appl., 5(3): 203–217, 1998.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    M. Bebendorf. Low-rank approximation of boundary element matrices. to appear in Numerische Mathematik.Google Scholar
  10. 10.
    A. Brandt. Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Comm., 65: 24–38. 1991.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    S. A. Goreinov, E. E. Tyrtyshnikov and N. L. Zamarashkin. A theory of pseudoskeleton approximations. Linear Algebra Anpl.. 261: 1–21 1997MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Steinbach, O. and Wendland, W. L.The construction of some efFicient preconditioners in the boundary element method. Numerical treatment of boundary integral equations. Adv. Comput. Math. 9(1–2): 191–216, 1998MathSciNetMATHGoogle Scholar
  13. 13.
    Rokhlin, V. Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60: 187–207, 1985.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Greengard, L. and Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys., 73: 325–348, 1987.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Greengard, L. and Rokhlin, V. A new version of the fast multipole method for the Laplace equation in three dimensions. Acta numerica, Cambridge : 229–269, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Bebendorf
    • 1
  • S. Rjasanow
    • 1
  1. 1.Department of MathematicsUniversity of SaarlandGermany

Personalised recommendations