Skip to main content

Matrix Compression for the Radiation Heat Transfer in Exhaust Pipes

  • Chapter
Multifield Problems

Summary

A mathematical model for the heat transfer in a system of exhaust pipes of an automobile is described. The forced convection of the exhaust gas, the heat conduction and the heat transfer due to radiation are coupled. An effective numerical solution of the boundary integral equation for the radiation heat transfer is presented. The analytical form of the matrix entries for the collocation method is derived. Adaptive cross approximation is used for the compression of the system matrix. Some numerical examples for the matrix compression are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nording. Neuartiges Konzept für Abgaskrümmer, Vorrohre und Katalysatoren. Motortechnische Zeitschrift, 52: 206–210, 1991.

    Google Scholar 

  2. W. Hackbusch. A sparse matrix arithmetic based on -H-matrices. I. Introduction to -H-matrices. Computing, 62(2): 89–108, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Hackbusch and B. N. Khoromskij. A Sparse -1-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems. Technical report, Max-PlanckInstitut, Leipzig, 1999.

    Google Scholar 

  4. W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54(4): 463–491, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Rjasanow. Effective Algorithms with Block Circulant Matrices. Linear Algebra Appl., 202: 55–69, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Rjasanow. Heat Transfer in an Insulated Exhaust Pipe. Journal Eng. Math., 29: 33–49, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Rjasanow. Optimal preconditioner for boundary element formulation of the Dirichlet problem in elasticity. Math. Methods in Appl. Sciences, 18: 603–613, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Rjasanow. The Structure of the Boundary Element Matrix for the Threedimensional Dirichlet Problem in Elasticity. Num. Linear Algebra Appl., 5(3): 203–217, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bebendorf. Low-rank approximation of boundary element matrices. to appear in Numerische Mathematik.

    Google Scholar 

  10. A. Brandt. Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Comm., 65: 24–38. 1991.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. A. Goreinov, E. E. Tyrtyshnikov and N. L. Zamarashkin. A theory of pseudoskeleton approximations. Linear Algebra Anpl.. 261: 1–21 1997

    Article  MathSciNet  MATH  Google Scholar 

  12. Steinbach, O. and Wendland, W. L.The construction of some efFicient preconditioners in the boundary element method. Numerical treatment of boundary integral equations. Adv. Comput. Math. 9(1–2): 191–216, 1998

    MathSciNet  MATH  Google Scholar 

  13. Rokhlin, V. Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60: 187–207, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  14. Greengard, L. and Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys., 73: 325–348, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  15. Greengard, L. and Rokhlin, V. A new version of the fast multipole method for the Laplace equation in three dimensions. Acta numerica, Cambridge : 229–269, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bebendorf, M., Rjasanow, S. (2000). Matrix Compression for the Radiation Heat Transfer in Exhaust Pipes. In: Sändig, AM., Schiehlen, W., Wendland, W.L. (eds) Multifield Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04015-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04015-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08693-9

  • Online ISBN: 978-3-662-04015-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics