On the Adaptive Computation of Shear Bands in Frictional Geomaterials

  • Wolfgang Ehlers
  • Peter Ellsiepen


In frictional geomaterials, shear bands occur as a result of local concentrations of plastic strains in small bands of finite width. Since in practice as well as in numerical simulations both the location of the onset and the direction of shear bands are generally unknown, time- and space-adaptive methods are an excellent tool to detect and to solve shear band problems. In the present contribution, the ill-posedness of the numerical computation of shear band phenomena is overcome by extending the standard continuum mechanical approach by the inclusion of micropolar degrees of freedom in the sense of the Cosserat brothers.


Shear Band Couple Stress Error Indicator Adaptive Computation Micropolar Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Bowen. Incompressible porous media models by use of the theory of mixtures. Int. J. Engnq. Sci., 18:1129–1148, 1980.MATHCrossRefGoogle Scholar
  2. 2.
    R. de Boer and W. Ehlers. Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 40, Universität-GH-Essen, 1986.Google Scholar
  3. 3.
    S. Diebels, P. Ellsiepen, and W. Ehlers. Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phase model. Technische Mechanik, 19:19–27, 1999.Google Scholar
  4. 4.
    W. Ehlers. Poröse Medien — ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen, 1989.Google Scholar
  5. 5.
    W. Ehlers. Constitutive equations for granular materials in geomechanical context. In K. Hutter, editor, Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337, pages 313–402. SpringerVerlag, Wien, 1993.Google Scholar
  6. 6.
    W. Ehlers. Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mechanik, 16:63–76, 1996.Google Scholar
  7. 7.
    W. Ehlers and W. Volk. On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. Int. J. Solids Structures, 35:4597–4617, 1998.MATHCrossRefGoogle Scholar
  8. 8.
    P. Ellsiepen. Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, Bericht Nr. II-3 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart. 1999.Google Scholar
  9. 9.
    I. Kossaczký. A recursive approach to local mesh refinement in two and three dimensions. J. Comp. Appl. Math., 55:275–288, 1994.MATHCrossRefGoogle Scholar
  10. 10.
    W. F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J. Comp. Appl. Math., 36:65–78, 1991.MATHCrossRefGoogle Scholar
  11. 11.
    W. Volk. Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien mit Hilfe der Cosserat- Theorie. Dissertation, Bericht Nr. II-2 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart. 1999.Google Scholar
  12. 12.
    O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng., 24:337– 357, 1987.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Wolfgang Ehlers
    • 1
  • Peter Ellsiepen
    • 1
  1. 1.Insitute of Applied MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations