Advertisement

The Many Roles of Viscosity in Solid Mechanics

  • Stuart S. Antman
Chapter

Summary

This paper describes how the strong dissipative mechanism in viscoelastic solids of strain-rate type plays a crucial role in a wide variety of problems.

Keywords

Global Attractor Longitudinal Motion Viscoelastic Layer Hopf Bifurcation Theorem Total Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Antman: The paradoxical asymptotic status of massless springs, SIAM J. Appl. Math. 48 (1988), 1319–1334.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    S. S. Antman and F. Klaus: The shearing of nonlinearly viscoplastic slabs, Nonlinear Problems in Applied Mathematics, edited by T. Angell, L. P. Cook, R. Kleinman, and W. E. Olmstead, SIAM, 1996, pp. 20–29.Google Scholar
  3. 3.
    S. S. Antman and H. Koch: Self-sustained oscillations of nonlinearly viscoelastic layers, SIAM J. Appl. Math., to appear.Google Scholar
  4. 4.
    S. S. Antman and J.-G. Liu: Errors in the numerical treatment of hyperbolic conservation laws caused by lack of invariance, in preparation.Google Scholar
  5. 5.
    S. S. Antman and R. Malek-Madani: Travelling waves in nonlinearly viscoelastic media and shock structure in elastic media, Quart. Appl. Math. 46 (1988) 77–93.MathSciNetMATHGoogle Scholar
  6. 6.
    S. S. Antman, R. S. Marlow and C. P. Vlahacos: The complicated dynamics of heavy rigid bodies attached to light deformable rods, Quart. Appl. Math. 56 (1998), 431–460.MathSciNetMATHGoogle Scholar
  7. 7.
    S. S. Antman and F. Schuricht: Incompressibility in rod and shell theories, Math. Modelling Num. Anal., 33 (1999), 289–304.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. S. Antman and T. I. Seidman: Quasilinear hyperbolic-parabolic equations of nonlinear viscoelasticity, J. Diff. Eqs. 124 (1996), 132–185.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    S. S. Antman and T. I. Seidman: Parabolic-hyperbolic systems governing the spatial motion of nonlinearly viscoelastic rods, in preparation.Google Scholar
  10. 10.
    R. E. Caflisch and J. H. Maddocks: Nonlinear dynamical theory of the elastica, Proc. Roy. Soc. Edin. 99A, 1–23.Google Scholar
  11. 11.
    H. Freistühler: Dynamic stability and vanishing viscosity: A case study of a non-strictly hyperbolic system, Comm. Pure Appl. Math. 45 (1992), 561–582.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    H. Freistühler and P. Szmolyan: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves, SIAM J. Math. Anal. 26 (1995), 112–128.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    S. Klainerman: The null condition and global existence to nonlinear wave equations, Lectures in Applied Mathematics, Vol. 23, Part 1, edited by B. Nicolaenko, D. D. Holm, and J. M. Hyman, 1986, pp. 293–326.Google Scholar
  14. 14.
    H. Koch and S. S. Antman: Stability and Hopf bifurcation for fully nonlinear parabolic-hyperbolic equations, SIAM J. Math. Anal., to appear.Google Scholar
  15. 15.
    R. J. LeVeque: Numerical Methods for Conservation Laws, Birkhäuser, 1992.MATHCrossRefGoogle Scholar
  16. 16.
    R. Saxton: Existence of solutions for a finite nonlinearly elastic rod, J. Math. Anal. Appl. 105 (1985) 59–75.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    D. R. Smith: Singular Perturbation Theory, Cambridge Univ. Press, 1985.MATHGoogle Scholar
  18. 18.
    A. B. Vasil’eva, V. F. Butuzov, and L. Kalachev: The Boundary Function Method for Singular Perturbation Problems, SIAM, 1995.MATHCrossRefGoogle Scholar
  19. 19.
    J. P. Wilber: Global Attractors for a Degenerate Partial Differential Equation from Nonlinear Viscoelasticity, Doctoral dissertation, Univ. Maryland, 1999.Google Scholar
  20. 20.
    S.-C. Yip, S. S. Antman, and M. Wiegner: The motion of a particle on a light viscoelastic bar: Asymptotic analysis of its quasilinear parabolic-hyperbolic equation, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stuart S. Antman
    • 1
  1. 1.Department of Mathematics, Institute for Physical Science and Technology, and Institute for Systems ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations